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Recent years have seen the concept of global symmetry extended to non-invertible (or categorical)
symmetries, for which composition of symmetry generators is not necessarily invertible. Such non-
invertible symmetries lead to a generalization of the standard Landau paradigm. In this work we
substantiate this framework by providing a (1+1)d lattice model, whose gapped phases and phase
transitions can only be explained by symmetry breaking of non-invertible symmetries.

Introduction. Global symmetries play a crucial role
in our understanding of physics as they provide pow-
erful constraints on the dynamics of a theory; for in-
stance, they restrict the possible phases a theory can
flow to in the infra-red (IR). Not only can the IR gapped
phases of a theory with global symmetry be organized
in terms of patterns of spontaneous symmetry breaking
(SSB), the phase transitions between such phases are also
constrained by the symmetry. When the symmetry is a
group G, this is the content of the Landau paradigm.

Starting with [1], the concept of symmetries has been
vastly generalized, including the extension to so-called
categorical or non-invertible symmetries [2]. As the name
implies, invertibility of the symmetry is relaxed, and
schematically the composition takes the form a ⊗ b =∑

c n
c
abc, where the coefficients are non-negative integers,

and c is summed over all symmetry generators.

In light of this, one is naturally led to explore the
constraints of such symmetries on IR physics. In recent
works [3–6] [7], a proposal for studying gapped and gap-
less phases protected by categorical symmetries was put
forward in Quantum Field Theory (QFT) using the so-
called Symmetry Topological Field theory (SymTFT) [8–
11]. This extends the standard Landau theory to a “cate-
gorical Landau paradigm” [3], leading to new phases and
phase transitions.

The goal of this work is to show, by means of a concrete
lattice model, how this extension to non-invertible sym-
metries provides a crucial theoretical tool to understand
beyond Landau phases. Our lattice model is realized on a
tensor product Hilbert space, acted upon by generalized
Ising Hamiltonians. These models exhibit four gapped
phases, with a commuting projector Hamiltonian within
each of them. The ground states cannot be explained as
standard SSB phases, but require a non-invertible sym-
metry, in this case Rep(S3), which is generated by ir-
reducible representations of the permutation group S3.
Moreover, by tuning the parameters in the generalized
Ising Hamiltonians, we also realize second order phase
transitions between such gapped phases. The order pa-
rameters for the phase transitions are mixtures of local
and string-like order parameters, which is a hallmark of
non-invertible symmetries [4, 12].

Interestingly, we find a phase transition involving two
degenerate gapless states, whose degeneracy also cannot
be explained by standard SSB, but only by invoking the

non-invertible Rep(S3) symmetry. The gapless systems
providing this phase transition form what is known as an
intrinsically gapless SSB (igSSB) phase [6] that exhibits
symmetry protected criticality : any symmetric deforma-
tion of the system either preserves the two degenerate
gapless states, or gaps the system in such a way that the
number of degenerate ground states necessarily increase,
thus increasing the amount of order.
This lattice model provides a concrete ultra-violet

(UV) realization of the gapped and gapless Rep(S3)
phases found using continuum methods in [4–6]. We re-
mark that lattice models whose phases can be character-
ized in terms of a Rep(S3) symmetry have been discussed
also in [13, 14], with the key difference that such models
are realized on constrained Hilbert spaces, and not on a
tensor product Hilbert space like the one presented here.

I: Trivial

GS Rep(S3)

III: Rep(S3)/Z2 SSB

GS0 GS1 GS2

II: Z2 SSB

GS+ GS−

IV: Rep(S3) SSB

GS2 GS1 GS0

Potts

Ising Ising⊕Ising

Figure 1. The Hamiltonian (2) has four gapped phases. These
are explained by the Rep(S3) non-invertible symmetry break-
ing, whose action on the gapped ground states GS and gapless
states is shown in blue (for symmetry operator U) and red (for
symmetry operator E), with purple showing the full Rep(S3)
action. The phase transitions are indicated by black arrows.
Non-zero vevs of order parameters are shaded yellow (for Oq)
and blue (for Op), with their intersection region shaded green.

Model. We label the sites by integers and half-integers.
On each integer site j ∈ Z we have a qutrit realizing C3,
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and on half-integer sites j + 1
2 , a qubit realizing C2. A

basis state of the full system is labeled as

|p⃗, q⃗ ⟩ = | · · · , pj , qj+ 1
2
, pj+1, qj+ 3

2
, · · · ⟩ (1)

with pj ∈ {0, 1, 2} and qj+ 1
2
∈ {0, 1}. Consider a space

of generalized Ising Hamiltonians, on a length L lattice,
comprising of terms with 3-site interactions of the follow-
ing form:

H = −
L∑

j=1

5∑
I=0

[
λIP

(I)

j− 1
2

+ tIX
(I)
j

]
, (2)

where the operators act on (C3 ⊗ C2)L as

P X

(3)
Restricted to the qubits (squares), the P andX operators
implement a disordering and ordering (in the x-basis)
respectively, while restricted to the qutrits (dots), these
implement an ordering and disordering respectively:

P
(2p+q)

j+ 1
2

=
1

6

[
1 + (−1)qσz

j+ 1
2

] [ 2∑
n=0

ω−pnZn
j Z

(2q−1)n
j+1

]
X

(2p+q)
j = (Xj)

p
(
σx
j− 1

2
Γjσ

x
j+ 1

2

)q
,

(4)

for p ∈ {0, 1, 2}, q ∈ {0, 1} and ω = exp(2πi/3). The
local operators σµ

j+1/2 are the usual Pauli operators,

whereas the operators acting on the qutrit degrees of free-
dom are Z = diag

(
1, ω, ω2

)
and

X =

0 0 1
1 0 0
0 1 0

 , Γ =

1 0 0
0 0 1
0 1 0

 . (5)

These models exhibit four different gapped phases, which
each have a commuting projector Hamiltonian realizing
ground states that are (unitarily equivalent to) tensor
product states. These can be used to extract the univer-
sal properties of the phase. We now describe the phases:

Phase I with One Ground State. A representative
commuting projector Hamiltonian within this gapped
phase is provided by setting [15] λI = 3tI = 1 for
I = 0, 2, 4 and λI = tI = 0 otherwise in (2). Doing
so, the Hamiltonian simplifies to

H1 = −
∑
j

[
1 + σz

j+ 1
2

2
+

1 +Xj +X2
j

3

]
. (6)

The first term projects onto σz = +1 state for each qubit
and the second term projects onto the X = +1 state for
each qutrit. Thus, the ground state is a product state

|GS1⟩ =
⊗
j

∣∣∣Xj = 1 , σz
j+ 1

2
= 1
〉
=

1

3L/2

∑
p⃗

∣∣p⃗, 0⃗〉 . (7)

Phase II with Two Ground States. A commuting
projector Hamiltonian is given by setting λI = 6tI = 1
for all I in (2). We note that

∑
I P

(I) = 1, therefore the
Hamiltonian simplifies to

H2 = −
∑
j

1

6

(
1 +Xj +X2

j

) (
1 + σx

j− 1
2
Γjσ

x
j+ 1

2

)
. (8)

The terms within the two parenthesis commute with one
another therefore we may first project onto the qutrit
states with Xj = 1, energetically satisfying the oper-
ator in the first parenthesis. Since, Γj = 1 on the
qutrit state with Xj = 1, we effectively need to satisfy
σx
j−1/2σ

x
j+1/2 = 1 for each j. There are two ground states

|GS2,±⟩ = 1

6L/2

∑
p⃗,q⃗

(±1)
∑

j q
j+1

2

∣∣p⃗, q⃗〉 . (9)

Phase III with Three Ground States. For this phase
we set λI = tI = δI,0, resulting in

H3 = −
∑
j

1

6

[
1 + σz

j+ 1
2

] [ 2∑
n=0

Zn
j Z

−n
j+1

]
, (10)

which simultaneously projects onto the σz
j+1/2 = 1 qubit

states and ZjZ
−1
j+1 = 1 quitrit states for all j. We thus

find three ground states labeled by n ∈ {0, 1, 2}

|GS3, n⟩ =
⊗
j

∣∣∣Zj = e
2πin

3 , σz
j+ 1

2
= 1
〉
=
∣∣n⃗ , 0⃗

〉
. (11)

Phase IV with Three Ground States. Finally, con-
sider λI = 2tI = δI,0 + δI,1, resulting in

H4 = −1

2

∑
j

(
1 + σx

j− 1
2
Γjσ

x
j+ 1

2

)

− 1

6

∑
j

∑
α=±1

[
1 + ασz

j+ 1
2

] [ 2∑
n=0

Zn
j Z

−αn
j+1

]
.

(12)

This has three ground states (see appendix A for details)

|GS4, 0⟩ =
1

2L/2

∑
q⃗

|⃗0 , q⃗⟩ ,

|GS4, 1⟩ =
1

2L/2

∑
q⃗

(−1)
∑

j q
j+1

2 |⃗0 , q⃗⟩ ,

|GS4, 2⟩ =
1

2L/2

∑
p⃗ ,q⃗

′
|p⃗ , q⃗⟩ ,

(13)

where
∑′

sums over pj ̸= 0 and pj +pj−1 mod 2 = qj− 1
2
.

Analysis of Gapped Phases. Typically, degenerate
ground states in a gapped phase can be explained in
terms of spontaneous breaking of a symmetry. There is
an obvious Z2 symmetry of (2) that measures the total
spin parity of all the qubits, generated by the unitary

U =
∏
j

σz
j+ 1

2
. (14)
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The gapped phases I and II can be explained in terms of
spontaneous breaking of this Z2 symmetry: |GS1⟩ pre-
serves it, whereas the states |GS2,±⟩ are degenerate and
Z2 exchanges them [16].
What is the explanation for the three-fold degener-

ate ground states in gapped phases III and IV? Al-
though there is a Z3 symmetry of the commuting pro-
jector Hamiltonian H3 generated by the unitary opera-
tor

∏
j Zj , other Hamiltonians near H3 in the parameter

space of models (2) explicitly break this Z3 symmetry,
without lifting the three-fold degeneracy of the ground
state subspace, and thus is not the explanation. We
will show that this space of Hamiltonians (2) exhibits
a Rep(S3) non-invertible symmetry, whose spontaneous
breaking explains the gapped phases III and IV.

Rep(S3) Symmetry. Rep(S3) has symmetry generators
given by the irreducible representations of the permuta-
tion group S3. There are two non-trivial such genera-
tors: one implemented by a unitary operator U and the
other implemented by a non-unitary operator E, with
multiplication rules (which is just the tensor product of
representations)

U2 = 1 , U×E = E×U = E , E2 = 1+U+E . (15)

Note that U generates a Z2 subsymmetry of Rep(S3), and
E is what is referred to as a non-invertible symmetry, as
its inverse does not exist.

In order for a system to realize Rep(S3) symmetry,
both these operators U and E have to commute with
the Hamiltonian. Within our model, the U operator is
realized as in (14), while the E symmetry generator is

E =
1

2

(
1 +

∏
j

σz
j+ 1

2

)
(T1 + T2)

Ts =
1

2

L∏
j=1

∑
n=1,2

[(
1+ (−1)n+1

j−1∏
i=0

σz
i+ 1

2

)
Xns

j

]
.

(16)

The reader can easily check that these operators (16)
satisfy the multiplication rules (15). Appendix B shows
that E commutes with the Hamiltonian (2).

Rep(S3) Action on Gapped Phases. We now show
that the ground states of the four gapped phases form
irreducible representations [17] of the Rep(S3) symmetry
(see Fig. 1), implying that the phases, including III and
IV, can all be explained by spontaneous breaking pat-
terns of Rep(S3) symmetry. All the four possible sym-
metry breaking patterns for Rep(S3) discussed from the
point of view of SymTFT in [4] are realized in our model.

The ground state of phase I is invariant under the ac-
tion of Rep(S3) (up to scalars), and is thus the trivial
phase for the Rep(S3) symmetry. In contrast, the two
ground states of phase II are exchanged by U and the
action of E is

E|GS2,±⟩ = |GS2,+⟩+ |GS2,−⟩ (17)

Next, the ground states of phase III are invariant under
U , but transform into each other by the E action as

E|GS3, n⟩ =
∑

m=1,2

∣∣GS3, n+m (mod 3)
〉

(18)

Finally, the action of U exchanges ground states |GS4, 0⟩
and |GS4, 1⟩ of phase IV, while leaving |GS4, 2⟩ invariant,
and the action of E is as follows

E|GS4, 0⟩ = E|GS4, 1⟩ = |GS4, 2⟩
E|GS4, 2⟩ = |GS4, 0⟩+ |GS4, 1⟩+ |GS4, 2⟩ .

(19)

Thus, the ground state degeneracy of both phases III and
IV can be explained in terms of spontaneous breaking of
the non-invertible symmetry E. The two phases are ad-
ditionally distinguished by the fact that phase IV has
ground states that also spontaneously break Z2 subsym-
metry U , but all ground states of phase III preserve U .
Phases III and IV were referred to as Rep(S3)/Z2 SSB
and Rep(S3) SSB phases respectively in [4], and we will
follow this nomenclature henceforth.

Order Parameters. The ground states of the four
gapped phases can be distinguished by expectation val-
ues of the following two local order parameters

Oq,j+ 1
2
= σx

j+ 1
2
, Op,j = Zj . (20)

We can easily compute their expectation values in the
various ground states, which are

⟨GS1|Oq|GS1⟩ = 0

⟨GS2,±|Oq|GS2,±⟩ = ±1

⟨GS3, n|Oq|GS3, n⟩ = 0

⟨GS4, 0|Oq|GS4, 0⟩ = 1

⟨GS4, 1|Oq|GS4, 1⟩ = −1

⟨GS4, 2|Oq|GS4, 2⟩ = 0

⟨GS1|Op|GS1⟩ = 0

⟨GS2,±|Op|GS2,±⟩ = 0

⟨GS3, n|Op|GS3, n⟩ = e
2πin

3

⟨GS4, 0|Op|GS4, 0⟩ = 1

⟨GS4, 1|Op|GS4, 1⟩ = 1

⟨GS4, 2|Op|GS4, 2⟩ = −1/2 .
(21)

The condensation of Oq, which is charged under the Z2

subsymmetry UOqU
−1 = −Oq, characterizes the spon-

taneous breaking of U . On the other hand, in phases
III and IV, Op is charged under E and its condensation
characterizes spontaneous breaking of E. In the language
of [4], the operator Op lies in a multiplet carrying gen-
eralized charge [12, 18] Q[a],1 of the Rep(S3) symmetry,
discussed in more detail in the accompanying paper [19].

Phase Transitions. To study phase transitions, we con-
sider the simplest model of a one-parameter interpolation
between two commuting projector Hamiltonians: e.g. for
the transition between Phases I and J this is

HI,J(λ) = λHI + (1− λ)HJ . (22)

One already encounters some interesting transitions in
this simplistic space of models. For H1,2, the low energy
physics is within the Xj = 1 subspace. Noting that Γj

acts identically within this space, one obtains

H1,2(λ) ≈ −1

2

∑
j

[
λσz

j+ 1
2
+ (1− λ)σx

j− 1
2
σx
j+ 1

2

]
, (23)
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where ≈ denotes that the Hamiltonian on the right hand
side only describes the low energy physics of H1,2(λ).
The critical Ising model describing the transition between
gapped phases I and II is at λ = 1/2, while the λ > 1/2
and λ < 1/2 regions corresponds to gapped phases I and
II where the U symmetry is preserved and spontaneously
broken, respectively. The operator Oq becomes the spin
operator of the Ising model, which is the well-known or-
der parameter for this transition.

Similarly, for H1,3, the low-energy physics lies in the
σz = 1 subspace, in which we find the three-state Potts
model spin chain Hamiltonian

H1,3(λ) ≈ −1

3

∑
j

2∑
n=0

[
λXn

j + (1− λ)Zn
j Z

−n
j+1

]
. (24)

This model has an emergent Z3 symmetry generated by
η =

∏
j Xj , which is explained by the fact that at low en-

ergies, i.e., in the σz = 1 subspace, the E symmetry op-
erator in (16) decomposes into η+η2. The corresponding
Z3 breaking transition occurs at λ = 1/2. The operator
Op becomes the spin operator of the Potts model, which
is the standard order parameter for this transition.

Lastly, we discuss the transition between the two
phases with three ground states modeled by H3,4. Note
that the Hamiltonian H3,4 block decomposes into two

state spaces V1 and V2. V1 is spanned by a basis |⃗0, q⃗⟩,
while V2 is spanned by states |p⃗, q⃗⟩ such that pj ̸= 0
and qj+1/2 = pj+1 + pj mod 2. In the V1 subspace,
Zj = Γj = 1 for all j, therefore

H3,4(λ)
∣∣∣
V1

= −1

2

∑
j

[
λσz

j+ 1
2
+ (1− λ)σx

j− 1
2
σx
j+ 1

2

]
. (25)

For V2, we define effective qubits σ̃µ
j such that the states

pj = 1, 2 are σ̃z
j eigenstates with eigenvalues +1 and −1

respectively. In terms of these

H3,4(λ)
∣∣∣
V2

= −1

2

∑
j

[
λσ̃z

j σ̃
z
j+1 + (1− λ)σ̃x

j

]
. (26)

Note that the U symmetry acts trivially within V2 and
as the Z2 symmetry measuring spin parity within V1.
The action of the E symmetry is more interesting as it
maps between the dynamically disconnected state spaces
V1 and V2 according to (for details see App. C)

E|V1
= S12 , E|V2

= S21 + U2 , (27)

where S12 maps V1 to V2 and acts on operators as

S12 :
(
σz
j+ 1

2
, σx

j− 1
2
σx
j+ 1

2

)
7−→

(
σ̃z
j σ̃

z
j+1 , σ̃

x
j

)
, (28)

which is precisely the familiar Kramers-Wannier duality
map. S21 implements the inverse map sending a state
|p⃗ , q⃗⟩ ∈ V2 to |⃗0 , q⃗⟩ ∈ V1 while U2 is a Z2 symmetry op-
eration that acts within V2 as pj → −pj mod 3, which
may be understood as the symmetry dual (under gaug-
ing) to U . These satisfy the following operator relations

S21S12 = 1 + U , S12S21 = 1 + U2 . (29)

Enforced by the E symmetry action, the Hamiltonians
(25) and (26) are precisely related by a Kramers-Wannier
duality or equivalently a Z2 gauging. The transition at
λ = 1/2 is in the Ising⊕Ising universality class. Note
that the degeneracy between the two gapless Ising states
can only be explained by breaking of the non-invertible
symmetry E, and hence is beyond the standard Landau
paradigm.
Oq becomes the spin operator in the first copy of

Ising (i.e., in V1), while it vanishes in V2. Meanwhile,
Op becomes the identity in V1 and exp{2πiσ̃z/3} in V2.
λ < 1/2 is the Rep(S3)/Z2 SSB phase with three ground
states on which U acts trivially, while λ > 1/2 is the
Rep(S3) SSB phase with three ground states, two of
which are the U breaking ferromagnetic states in V1 and
the third is the U invariant ground state in V2.

Symmetry Protected Criticality. The Ising ⊕ Ising
transition described above lies in a gapless phase ex-
hibiting symmetry protected criticality [6, 20–25]. Any
Rep(S3) symmetric deformation of a gapless system lying
in this phase can only trigger renormalization group flows
that lead to infrared phases of the form T⊕T/Z2, where
T is a Z2 symmetric theory and T/Z2 is the theory ob-
tained after gauging this Z2 symmetry. The only possible
gapped deformations are obtained by choosing T to be a
Z2 symmetric phase. Choosing T to be paramangetic
or ferrmagnetic (Z2 SSB) phase leads respectively to
Rep(S3)/Z2 and Rep(S3) SSB phases. Consequently, ei-
ther the system remains gapless with two gapless states,
or it becomes gapped with three gapped states. Thus, it
is not possible to break criticality without inducing ad-
ditional order, making this into an intrinsically gapless
SSB (igSSB) phase introduced in [6] [26].

Including Impurities. So far, we have focused on clean
systems with translationally invariant Hamiltonians. In
a system with a global symmetry, it is natural to also
consider the symmetry twisted sectors. The twisted sec-
tor Hilbert space for group like, i.e. invertible, symmetry
operators is isomorphic to the untwisted sector Hilbert
space; however, some Hamiltonian terms located at the
symmetry twist are modified. E.g. inserting a U -twist at
site j0 on the lattice corresponds to the modification

σx
j0− 1

2
σx
j0+

1
2
−→ −σx

j0− 1
2
σx
j0+

1
2
, (30)

in the Hamiltonian. Note that this only alters the op-

erators X
(2I+1)
j0

in (2). In contrast, the twisted sector
Hilbert space corresponding to a non-invertible symme-
try operation is not isomorphic to the untwisted sector
Hilbert space. Inserting an E symmetry twist at site
j0 corresponds to modifying the Hilbert space by insert-
ing an impurity with an associated two-dimensional state
space at j0. We denote the Pauli operators acting on the
impurity Hilbert space as σµ

j0
. Then the corresponding

E-twisted Hamiltonian is given by making the following
modifications in (2)

Zj0 (Zj0+1)
α → Zj0ω

σz
j0 (Zj0+1)

α
, Γj0 → Γj0σ

x
j0 , (31)
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where α = ±1. These symmetry defects satisfy the
Rep(S3) multiplication rules in eq. (15). The Hamilto-
nian with two U symmetry twists, at the sites j0 and
j0 +n is unitarily mapped to the untwisted Hamiltonian
by conjugating with

∏n−1
ℓ=0 σz

j0+
1
2+ℓ

. Similarly,the Hamil-

tonian with a U twist at j0 and an E twist at j0 + n
can be mapped to a Hamiltonian with a single E sym-
metry twist at j0 + n by conjugating with the unitary∏n−1

ℓ=0 σz
j0+

1
2+ℓ

σj0+n. Finally, let us describe the multi-

plication rules of E symmetry twists. Consider the case
where both symmetry twists/impurities are located at
the same site j0[27]. Denote the Pauli operators on the
two impurity Hilbert spaces as σµ

j0
and σ̃µ

j0
respectively.

Then the corresponding E ⊗ E-twisted Hamiltonian is
given by making the following modifications in (2)

Zj0 (Zj0+1)
α → Zj0ω

σz
j0

+σ̃z
j0 (Zj0+1)

α
, Γj0 → Γj0σ

x
j0 σ̃

x
j0 .

(32)
The four dimensional impurity state space decomposes

as a sum of symmetry twisted sectors as

(C4)E⊗E = (C2)E ⊕ (C)1 ⊕ (C)U , (33)

where (C2)E = {|0⟩|0⟩, |1⟩|1⟩}C while (C)1 and (C)U are
spanned by |0⟩|1⟩+ |1⟩|0⟩ and |0⟩|1⟩− |1⟩|0⟩ respectively.
Outlook. In a companion paper [19], we discuss more
systematically (1+1)d lattice models [28–33] with fusion
category symmetries, using the anyon chain and con-
structing gapped and gapless phases. This showcases an
example of more general constructions of lattice models
with non-standard symmetries, which host novel phases
and phase-transitions. This can be extended to higher-
dimensions using the lattice models in [34, 35], opening
up new avenues to study phases in d > 2, with poten-
tial applications in the study of quantum magnets, which
have rich phase diagrams realizing beyond-Landau spin
liquid phases.
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Appendix A: Ground States of the Hamiltonian H4

In this section we provide more details for the derivation of the ground states of the Hamiltonian

H4 = −1

2

∑
j

(
1 + σx

j− 1
2
Γjσ

x
j+ 1

2

)
− 1

6

∑
j

∑
α=±1

[
1 + ασz

j+ 1
2

] [ 2∑
n=0

Zn
j Z

−αn
j+1

]
. (A1)

The first and second terms commute, so they can be diagonalized simultaneously. We first consider the +1 eigenspace
of the second term in (A1). Notice that this enforces a relation between the variables pj−1, qj+ 1

2
and pj+1, namely{

pj+1 − pj = 0 if qj+ 1
2
= 0

pj+1 + pj = 0 (mod 3) if qj+ 1
2
= 1 .

(A2)

We first consider states |p⃗, q⃗⟩ such that pj ̸= 0 and pj + pj−1 = qj− 1
2
(mod 2). It is easy to check that all of these

states form a single orbit under the action of the first term in (A1). Therefore we can identify a first ground state of
the Hamiltonian as ∑

p⃗ ,q⃗

′
|p⃗ , q⃗⟩ , pj ̸= 0 , pj + pj−1 = qj− 1

2
mod 2 (A3)

with the appropriate normalization, where
∑′

p⃗ ,q⃗ denotes a sum restricted precisely to states satisfying the above

condition. We can then consider states that have pj = 0 for every site j. Among these, all the |⃗0 , q⃗⟩ states such that∑
j qj+ 1

2
= 0 (mod 2) are permuted among each other by the first term in the Hamiltonian (A1). Similarly, the states

such that
∑

j qj+ 1
2
= 1 (mod 2) form an orbit under the action of the first term. We can then define two eigenstates



6

of (A1) as

|+⟩ ∼
∑
q⃗

|⃗0, q⃗⟩ ,
∑
j

qj+ 1
2
= 0 mod 2

|−⟩ ∼
∑
q⃗

|⃗0, q⃗⟩ ,
∑
j

qj+ 1
2
= 1 mod 2 .

(A4)

with the appropriate normalization. Notice that |+⟩ and |−⟩ are respectively even and odd under the Z2 symmetry
generated by

U =
∏
j

σz
j+ 1

2
. (A5)

We therefore observe that the Z2 symmetry must be spontaneously broken in the gapped phase realized by the ground
states of this Hamiltonian. In this instance it is well-known (see for example [4]) that the ground states are given by
the two combinations

|+⟩ ± |−⟩
2

. (A6)

Therefore we find the other two ground states of H4 as∑
q⃗

|⃗0 , q⃗⟩ ,

∑
q⃗

(−1)
∑

j q
j+1

2 |⃗0 , q⃗⟩ ,
(A7)

with the appropriate normalization. This reproduces all the ground states listed in (13).

Appendix B: Proof that Rep(S3) Symmetries Commute with the Hamiltonian

The operator U , defined in (14), which measures the total spin parity of the qubits, clearly commutes with the
Hamiltonian (2). Let us then consider the symmetry operator E ∈ Rep(S3), which we defined in (16), and show that
it also commutes with H. For convenience, let us define the operators

Q±
j =

1

2

(
1±

j−1∏
i=0

σz
i+ 1

2

)
, (B1)

so that we can rewrite Ts in (16) as

Ts =

L∏
j=1

[
Q+

j X
s
j +Q−

j X
2s
j

]
. (B2)

Let us start by considering the term

X
(2I+s)
j = (Xj)

I(σx
j− 1

2
Γjσ

x
j+ 1

2
)s (B3)

in the Hamiltonian. The Xj operators clearly commute with each other, so we only need to care about the possible
non-commutativity of σz with σx, as well as Γ and Xs, when the two operators are at the same lattice site. In
particular, the terms in Ts that overlap on the lattice with

σx
j− 1

2
Γjσ

x
j+ 1

2
(B4)

are (
Q+

j X
s
j +Q−

j X
2s
j

) (
Q+

j+1X
s
j+1 +Q−

j+1X
2s
j+1

)
. . . . (B5)
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First of all, it is easy to show that the
(
Q+

k X
s
k +Q−

k X
2s
k

)
operators commute with (B4) when k ≥ j + 1. This is

because in this instance there is no overlap between Γj , which acts as 1 ↔ 2 on the pj variable, and Xs,2s
k , which

act on pk. Moreover, in this case every Q±
k contains both σz

j+ 1
2

and σz
j− 1

2

, which implies its commutation with a

simultaneous flip of the qj+ 1
2
and qj− 1

2
variables due to the action of (B4). Therefore, we only need to worry about

the first term in (B5), which involves Xs,2s
j and Q±

j . Notice that since

Q±
j = 1± σz

1
2
. . . σz

j− 1
2
, (B6)

acting first on a state |p⃗, q⃗⟩ with (B4) effectively changes Q+
j → Q−

j . The fact that the full operator Ts commutes
with this term follows then since, as one can check,

ΓjXj |pj⟩ = X2
j Γj |pj⟩ , ΓjX

2
j |pj⟩ = XjΓj |pj⟩ . (B7)

Now let us consider the second term in the Hamiltonian (2), namely

P
(2I+s)

j+ 1
2

=
1

6

[
1 + (−1)sσz

j+ 1
2

] [ 2∑
n=0

ω−InZn
j Z

(2s−1)n
j+1

]
. (B8)

Let us focus on P
(0)

j+ 1
2

and P
(1)

j+ 1
2

, with the other terms being analogous. We first observe that considering the +1

eigenspace of these operators enforces a relation between the variables pj−1, qj+ 1
2
and pj+1, namely{

pj+1 − pj = 0 if qj+ 1
2
= 0

pj+1 + pj = 0 (mod 3) if qj+ 1
2
= 1 .

(B9)

To show that E commutes with Pj+ 1
2
, we essentially need to show that its action respects these relations. Let us

consider e.g. T1 for concreteness. The relevant terms are

(Q+
j Xj +Q−

j X
2
j )(Q

+
j+1Xj+1 +Q−

j+1X
2
j+1) . (B10)

We first consider the case qj+ 1
2
= 0. The first term in (B10) acts on a state |p⃗, q⃗⟩ as pj → pj + k, with k = 1 if

Q+
j = +1 and k = 2 if Q−

j = 1. Moreover, notice that since qj+1 = 0, the total parity evaluated by Q±
j+1 does not

change and therefore also the second term acts by exactly the same shift pj+1 → pj+1 + k. Therefore the relation
pj+1 − pj = 0 is preserved. Now let us consider the case qj+ 1

2
= 1. Again the term in the first parenthesis in (B10)

acts as pj → pj + k depending if either Q+
j or Q−

j is non-zero. However, since qj+ 1
2
= 1, now Q±

j+1 detects precisely

the opposite parity. Therefore the second term now acts as pj+1 → pj+1 + 2k (mod 3). This means that also in this

case the relation pj+1 + pj = 0 (mod 3) is preserved. Therefore T1 commutes with P
(0)

j+ 1
2

, P
(1)

j+ 1
2

. The other cases are

completely analogous.

Appendix C: Action of E in the igSSB-Phase

Let us consider how the symmetry E ∈ Rep(S3) acts on the model H3,4(λ) describing the transition between the
Rep(S3) SSB and Rep(S3)/Z2 SSB gapped phases. As described in the main text, the low lying spectrum within this
phase contains two dynamically disconnected state spaces V1 and V2. The state space V1 spanned by states of the
form |⃗0, q⃗⟩ can further be decomposed as

V1 = V +
1 ⊕ V −

1 , (C1)

where V s
1 is the space with a s eigenvalue under U . More specifically, the states with

∑
j qj+ 1

2
= 0 mod 2 lie in

V +
1 , while the states

∑
j qj+ 1

2
= 1 mod 2 lie in V −

1 . It can be seen from Eq. (16) that V −
1 is in the kernel of the E

symmetry operator, while a state in V +
1 transforms as

E |⃗0, q⃗⟩ = |p⃗1(q⃗), q⃗⟩+ |p⃗2(q⃗), q⃗⟩ ∈ V2 , (C2)

where p⃗1(q⃗) and p⃗2(q⃗) are two configurations of the qutrit degrees of freedom such that pj ̸= 0 and qj+1/2 = pj+1 +
pj mod 2. Since E maps states in V1 to states completely lying within V2, we denote

E
∣∣∣
V1

= S12 , (C3)
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The map S12 sends a state with qj+ 1
2
= 0, i.e. σz

j+ 1
2

= 1, to the sum of states with pj = pj+1, i.e. σ̃
z
j σ̃

z
j+1 = 1.

Similarly, S12 sends a state with qj+ 1
2
= 1, i.e. σz

j+ 1
2

= −1, to the sum of states with pj = −pj+1, i.e. σ̃
z
j σ̃

z
j+1 = −1.

Similarly one can verify that S12 maps σx
j− 1

2

σx
j+ 1

2

to σ̃x
j . To summarize S12 implements the familiar Kramers-Wannier

map on operators

S12 :
(
σz
j+ 1

2
, σx

j− 1
2
σx
j+ 1

2

)
7−→

(
σ̃z
j σ̃

z
j+1 , σ̃

x
j

)
. (C4)

Note that p⃗1(q⃗) and p⃗2(q⃗) in eq. (C2) are related by inverting all pj to −pj . We may therefore define a Z2 operation
U2 =

∏
j Γj acting within V2 that implements

U2|p⃗ , q⃗⟩ = | − p⃗ , q⃗⟩ . (C5)

It then follows from Eq. (16) that a state in V2 transforms under E as

E|p⃗ , q⃗⟩ = |⃗0 , q⃗⟩+ U2|p⃗ , q⃗⟩ =: S21|p⃗ , q⃗⟩+ U2|p⃗ , q⃗⟩ . (C6)

To summarize, the E symmetry is realized as

E
∣∣∣
V1⊕V2

= S12 + S21 + U2 , (C7)

where S12 and S21 satisfy the relations

S21S12 = 1 + U , S12S21 = 1 + U2 . (C8)
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