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It has been recently shown that 2D systems can exhibit crystalline phases with long-range trans-
lational order showcasing a striking violation of the Hohenberg-Mermin-Wagner (HMW) theorem
which is valid at equilibrium. This is made possible by athermal driving mechanisms that inject
energy into the system without exciting long wavelength modes of the density field. However, as
thermal fluctuations are superimposed on the non-equilibrium driving, long-range translational or-
der is inevitably lost. In this paper, we discuss the possibility of exploiting non-equilibrium effects
to suppress arbitrarily large density fluctuations even when a global thermal bath is coupled to the
system. We introduce a model of a harmonic crystal driven both by a global thermal bath and
by a momentum conserving noise, where the typical observables related to density fluctuations and
long-range translational order can be analytically derived and put in relation. This model allows
us to rationalize the violation of the HMW theorem observed in previous studies through the pre-
diction of large-wavelength phonons which thermalize at a vanishing effective temperature when
the global bath is switched off. The conceptual framework introduced through this theory is then
applied to numerical simulations of a hard-disk solid in contact with a thermal bath and driven out-
of-equilibrium by active collisions. Our numerical analysis demonstrates how varying driving and
dissipative parameters can lead to an arbitrary enhancement of the quasi-long-range order in the
system regardless of the applied global noise amplitude. Finally, we outline a possible experimental
procedure to apply our results to a realistic granular system.

I. INTRODUCTION

The celebrated Hohenberg-Mermin-Wagner (HMW)
theorem [1–3] is a cornerstone of equilibrium statistical
mechanics. It establishes the impossibility of obtaining
long-range order through continuous symmetry breaking
in 1D and 2D equilibrium spin systems with short-range
interactions at finite temperature. Similarly, 2D crystals
with short-range interactions exhibit translational quasi-
long-range order with a correlation function decaying as
a power law due to strong phonons excitations at ar-
bitrarily large length scales [4]. However, their bond-
orientational order is long-range [5–8].

While the HMW theorem arises from equilibrium sta-
tistical physics, the majority of systems encountered in
nature operate out-of-equilibrium. Consequently, the ap-
plicability of the theorem to such systems is not assured.
As an example, a notable breakdown is observed in the
flocking behavior of birds [9]. This process can be mod-
eled by an active XY model – the Vicsek model [10],
showcasing spin-spin long-range order in 2D [11–15], in
clear violation of the HMW theorem. Various studies
have further explored potential violations of this theo-
rem in non-equilibrium spin-like systems due to forcing
at multiple temperatures [16, 17]; advection of the or-
der parameter through a shear flow [18–22]; or a col-
ored noise [23, 24]. These ingredients have been shown
to be crucial in order to obtain spin-spin long-range or-
der. However, until recently, the prerequisites for transla-
tional long-range order in 2D crystals remained unknown.
Indeed, while exceptions were found in nematic crystals
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[25] or chiral active matter [26], Mermin-Wagner fluctu-
ations are usually found to be enhanced in the presence
of active forces [27–29] and as a result, an increase of the
lower critical dimension is often observed due to giant
number fluctuations [30, 31].

However, Galliano et al. presented compelling evi-
dence of the breakdown of the HMW theorem in 2D
crystalline systems [32] formed in the active state of a
random organization model. The authors showed that,
unlike in short-ranged equilibrium systems, a simple non-
equilibrium hyperuniform crystal exhibits translational
long-range order, as already hinted in Refs. 33 and 34,
due to the absence of thermal fluctuations at large length
scale.

Given these premises, it is important to point out that
the recent observations of crystalline phases with long-
range translational order in two dimensions only concern
models where thermal-like fluctuations are absent by con-
struction [32, 35–37]. These studies leave open the follow-
ing key question: how is the translational order affected
when thermal fluctuations cannot be neglected?

To tackle this question, in this article, we will inves-
tigate the limits of the HMW theorem and its potential
breakdown in non-equilibrium systems through a theo-
retical model of a harmonic crystal coupled to a local
bath conserving the center of mass (COM) and a global
thermal-like bath. We will show that for this system, the
decay of the translational long-range order is controlled
by the temperature of the COM and not by the overall ki-
netic energy, as expected at equilibrium [4]. This theory
includes the case of true long-range translational order as
a particular limit and allows quantifying deviations from
it due to thermal effects.

We next apply our theory to the time-continuous ana-
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logue [38] of a discrete random organization model in
which thermal fluctuations are taken into account. It
consists of a hard-disk solid in contact with a thermal
bath and driven out-of-equilibrium by active collisions.
Through numerical simulations, we show that, in the ab-
sence of thermal fluctuations, this system exhibits a hy-
peruniform long-range ordered 2D crystal in agreement
with the phenomenology observed in [32, 35]. However,
when thermal-like motion is taken into account, per-
fect long-range order is lost. Despite this, we demon-
strate how exploiting the non-equilibrium properties of
the model enables us to suppress arbitrarily large density
fluctuations. This makes it possible to enhance the quasi-
long-range translational order in a non-equilibrium crys-
tal without the need to neglect or fine-tune thermal fluc-
tuations. Our model will also serve as a coarse-grained
representation of a confined quasi-2D vibrated granular
system [38] thus naturally providing a platform for in-
vestigating the enhancement of quasi-long-range transla-
tional order in experimental systems.

The paper is organized as follows: In Sec. II we in-
troduce the theoretical model for a harmonic crystal and
derive the analytical expression of the typical observables
related to density fluctuations and long-range transla-
tional order. In Sec. III, we report the numerical results
for the non-equilibrium hard-disk solids. Finally, Sec.
IV contains the conclusion and a brief discussion about a
possible experimental procedure to enhance quasi-long-
range order in a realistic granular system.

II. THEORY

A. The model

We study a 2D crystal made of N particles with masses
m arranged on a periodic lattice of size L×L and lattice
spacing a. Each particle on the lattice site n interacts
with its neighbors {n̄} via a harmonic interactionK. Ad-
ditionally, every particle is coupled to two baths: a global
one and a local one which conserves the momentum and
COM. In order to have a well-defined equilibrium limit,
both of them separately respect the fluctuation dissipa-
tion theorem (FDT) [39–42]. From a physical standpoint,
the global bath can emerge from the coarse-graining of
an external energy source such as in the case of colloids
diffusing in a fluid or beads vibrating on a rough surface,
while the local bath is more likely to come from an in-
ternal source such as collisions between particles, as with
the noise current in fluctuating hydrodynamics [43–46].
The displacement un of each particle at lattice site n
with respect to their ideal lattice position is described by
the following Langevin equation:

mün = −K
∑

{n̄}

(un − un̄) + Fcom + Floc (1)

The first term on the right-hand side of the equation

represents the harmonic interaction between neighbors
with spring constant K.
The second term Fcom represents the coupling between

the system and a global bath, which does not conserve
the position of the COM:

Fcom = −γcomu̇n +
√
2γcomTcomξn, (2)

where γcom is a global damping and Tcom is the tempera-
ture of the bath. The spatial components α of the white
noise are Gaussian and uncorrelated, with zero average:

⟨ξαn (t)ξβm(t′)⟩ = δ(t− t′)δn,mδα,β ⟨ξn(t)⟩ = 0. (3)

Finally, the last term in Eq. (1) represents a second
bath, at temperature Tloc, conserving the momentum and
the position of the COM. To fulfill this requirement, we
use a discretized version of Model B [47–52]:

Floc = −γloc
∑

{n̄}

(u̇n − u̇n̄) +
√

2γlocTloc(∇ ·Ξn). (4)

The conservation of
∑

n u̇n is ensured by a discrete
Laplacian of u̇ for the damping γloc, taken to be the aver-
age over first neighbors and a divergence acting on a rank
2 random tensorΞ. This type of damping naturally arises
in granular gases where collisions tend to align particles
[53], in active matter with effective alignment [46, 54] or
in Dissipative Particle Dynamics [55–57]. More generally,
with the corresponding equilibrium noise, it plays the role
of a discrete hydrodynamic viscosity. Note that if every
particle moves in the same direction, neither damping
nor noise is applied, in line with the idea that this local
noise might arise from collisions between particles and
acts locally. Our model constitutes a simplified lattice
equivalent to a fluctuating hydrodynamics description of
a solid [58–64]. The variance and the average of the rank
2 tensor Ξn are fully determined by our assumption that
the FDT holds separately for both noises [42, 65]:

⟨Ξα,µ
n (t)Ξβ,ν

m (t′)⟩ = δ(t′ − t)δα,βδµ,νδn,m, (5)

We further discuss the peculiarity of the noise as well as
the expression of the discrete Laplacian and divergence
in Appendix A following Ref. 66.
For simplicity, in the following, we chose to work

in Fourier space by performing a semi-discrete Fourier
transform (see Appendix B) on Eq. (1) [67, 68]:

(
−mw2 − iw(γcom + γlocω

2
k) +Kω2

k

)
ũk =

√
2γcomTcomξ̃k

+
√

2γlocω2
kTlocη̃k,

(6)

with ωk the dispersion relation of the lattice divided by
the natural frequency of the lattice

√
K/m or equiv-

alently, the eigenvalue of the discrete Laplacian. For
instance, in a square lattice, ω2

k = 2(2 − cos(kxa) −
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cos(kya)). Both noises have unit variance and zero aver-
age, from a Fourier transform we obtain:

⟨ξ̃αk (w)ξ̃βq (w′)⟩ = δ(w + w′)δq,−kδ
α,β ⟨ξ̃αk (w)⟩ = 0

⟨η̃αk (w)η̃βq (w′)⟩ = δ(w + w′)δq,−kδ
α,β ⟨η̃αk (w)⟩ = 0

(7)

The noises are simple to generate in the reciprocal space
compared to the ones in real space. Moreover, we clearly
see that the local bath does not act on the COM since it
vanishes at k = 0 implying that, as wanted, the motion
of the COM is completely governed by the global bath.

Due to the harmonicity of the crystal, Eq. (6) is non-
interacting in k-space and every mode reaches an inde-
pendent equilibrium-like steady state at an effective k-
dependent temperature:

T̃k =
γcomTcom + γlocω

2
kTloc

γcom + γlocω2
k

. (8)

Since the dispersion relation must vanishes at low k:
ω2
k ∼ (ak)2 [68] we obtain the two limiting cases:

T̃k→0 = Tcom

T̃k→∞ = Tloc if γloc ≫ γcom.
(9)

That is, the large length scale temperature is controlled
by Tcom since the energy created on small length scales by
the local bath is damped by γcom on every scale. While
the small length scale temperature is controlled by both
the global and local bath. In the following, we will as-
sume that the system is more weakly coupled to the local
bath compared to the global bath: γloc ≫ γcom which
leads to Tk→∞ = Tloc.

The equilibrium-like nature of our equation stems from
the assumption that both baths are delta correlated and
that each mode is independent on the others in k space.
This would not be the case in a realistic system with
anharmonic terms for instance. Nonetheless, energy in-
jection would still be localized at the scale of collisions –
albeit with an energy flux between modes [69] – and large
wavelength thermal fluctuations would remain damped
by γcom. Therefore, the rough phenomenology intro-
duced in this section is expected to hold as well, in these
more complex cases.

B. Hyperuniformity

As already noted in Ref. 32, a key requirement to ob-
tain a long-range ordered 2D crystal is hyperuniformity
i.e. the suppression of density fluctuations at arbitrarily
large length scales. Within the context of the proposed
theoretical model, we derive here the analytical expres-
sion of the structure factor S(k) whose vanishing low-k
limit indicates the presence of hyperuniformity in a sys-
tem [33].

We start by computing the static displacement func-
tion (SDF) Cuu(k) ≡ Cuu(k, t = 0):

Cuu(k) =
1

2π

∫
dw⟨ũk(w) · ũ−k(−w)⟩

=
2

K

γcomTcom + γlocω
2
kTloc

ω2
k(γcom + γlocω2

k)
=

2

Kω2
k

T̃k.

(10)

where Eq. (6) and (7) have been used to calculate av-
erages over the noise. The above identity represents
the equipartition of elastic energy at an effective tem-
perature T̃k which is given by Eq. (8). The standard
equipartition theorem for phonons Kω2

kCuu(k)/2 = Tloc

or Kω2
kCuu(k)/2 = Tcom is recovered in the three equi-

librium limits of the model, that is either when γcom =
0, γloc = 0 or Tcom = Tloc. In the large lengths limit
where ω2

k ∼ (ak)2, the SDF reads:

Cuu(k) =
2Tcom

K(ak)2
+

2γloc(Tloc − Tcom)

Kγcom

+O
(
(Tloc − Tcom)(ak)2

)
.

(11)

and diverges as 1/(ak)2 at equilibrium or more generally
when Tcom ̸= 0. However, when Tcom = 0 and γcom ̸= 0,
the phonons created locally are damped over large dis-
tances and long wavelength phonons are completely sup-
pressed since their elastic energy Kω2

kCuu(k)/2 goes to
0. The same type of result can be found for the static
velocity factor mCu̇u̇(k)/2 = T̃k showing a depletion of
kinetic energy on large scales.
At this point, it is illuminating to note that the long-

range structure factor S(k) and the SDF are linked by
the relation [33, 34]:

S(k) =

〈
1

N

∣∣∣∣∣
∑

n

eik·(an+un)

∣∣∣∣∣

2〉

=
〈
|k · ũk|2

〉
+O

(
|k · ũk|4

)

= |k|2Cuu(|k|) +O
(
|k · ũk|4

)
(12)

Where we used the fact that in our model the longitu-
dinal dispersion relation is equal to the transversal ones.
Otherwise, the last relation only holds for longitudinal
polarization of the displacement [34]. In an equilibrium
system, the value of the structure factor at k = 0 is a
constant proportional to the isothermal compressibility
and the temperature [70, 71]. However in our case, from
Eq. (11), it follows that:

S(k) =
2Tcom

Ka2
+

2γloc(Tloc − Tcom)

γcom
k2

+O
(
(Tloc − Tcom)a2k4

)
.

(13)

When Tcom = 0 and γcom ̸= 0, since the SDF is finite at
low k, the structure factor behaves as S(k) ∼ k2, unveil-
ing the hyperuniformity of our non-equilibrium system
when the COM position is conserved by the noise at finite
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global damping. This aligns with results found in Refs.
26, 32, 50, 72–75 and confirms that our model includes a
suitable limit to study the emergence of long-range order
in dimension lower than three.

C. (Quasi-)long-range order

To quantitatively describe the emergence of long-range
order in our model, we consider the crystalline transla-
tional correlation function, defined as [76, 77]:

gG(|n−m|) =
〈
eiG·(un−um)

〉
= e−⟨(G·(un−um))2⟩/2,

(14)
where G is one of the inner Bragg-peak vectors of the
crystal and the last equality follows from the gaussian-
ity of the stationary probability distribution function.
In a long-range ordered crystal, the correlation function
decays to a constant value while in a quasi-long-range
2D equilibrium crystal it exhibits an algebraic decay
[4, 7, 77–80]. From Eq. (14), it is clear that the asymp-
totic behavior of the displacement correlation function
⟨(un − um)2⟩ governs the translational long-range be-
havior of the system. Specifically, if the displacement
correlation function reaches a constant or decays at large
distances, true long-range order is expected, otherwise,
only quasi-long-range order or short-range order is found.
In the infinite system size limit and at large distances
compared to the lattice spacing it can be approximated
as (see Appendix C) :

⟨(un − um)2⟩ ≃ a2

π

∫ π
a

1
a|n−m|

dkkCuu(|k|)

≃





2Tcom

πK
log(π|n−m|) |n−m| ≫ δ−1

2Tloc

πK
log(π|n−m|)) |n−m| ≪ δ−1.

(15)

where ω2
k = (ak)2 was assumed and δ =

√
γcom/γloc

is the adimensionalized natural inverse length scale of
the system. At Tcom = Tloc we recover the equilib-
rium logarithmic increase with distance, proportional to
the temperature [4]. In a non-equilibrium setting with
Tcom ̸= Tloc, the divergence is still present, but with Tcom

as the prefactor at large scales and Tloc at small scales
(still larger than the lattice spacing). The numerical ”ex-
act” computation of the integral for a hexagonal lattice
and its comparison with our approximate formula are
shown in Fig. 1. As expected, the approximations work
well at large distances. At short distances, although the
global scaling remains the same, strong oscillations ap-
pear on top of the logarithmic scaling since the phonons
start to feel the discreteness of the lattice. For large δ,
the transition between the two regimes happens far away
from the lattice spacing allowing for a large range of val-
ues over which both scalings are clear and oscillations

100 101

|n−m|
√
γcom/γloc

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

π
K
〈(u

n
−
u
m

)2 〉/
2

∼ Tloc log(n−m)

∼ Tcom log(n−m)

Approx. integral

Numeric. integral

FIG. 1. Numerical and approximate values of ⟨(un − um)2⟩
at γcom/γloc = 10−3 given by Eqs. (15) and (C2). For the
numerically solved integral, we use the dispersion relation of
a hexagonal lattice.

small. From Eq. (14) and (15) we obtain that the trans-
lational correlation function exhibits a double power law
behavior:

gG(|n−m|) ∼





|n−m|−|G|2Tcom/(2πK) |n−m| ≫ δ−1

|n−m|−|G|2Tloc/(2πK) |n−m| ≪ δ−1,
(16)

where the angle average of the dot product appearing in
Eq. (14) was taken into account by assuming an isotropic
crystal. At non zero Tcom, the large-scale decay of the
correlation function is algebraic indicating quasi-long-
range order [81]. Nonetheless, in contrast to the equilib-
rium picture, the average kinetic energy of the system can
be arbitrarily high, the only crucial factor for the trans-
lational quasi-long-range behavior of the system at large
scale, is the temperature of the COM or equivalently, the
temperature of the phonons existing on these scales. We
also note that, as expected when the COM is conserved
at finite global damping (Tcom = 0 and γcom ̸= 0), the
system displays genuine long-range order as observed in
Ref. 32 and the HMW theorem is broken.

We finally point out that the connection between hy-
peruniformity and the emergence of long-range order is
made explicit by Eqs. (15) and (12) which show the
relationship between the large distance behavior of the
displacement correlation function and the low-k limit of
the structure factor. Indeed, for large distances, we find
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in 2D:

⟨(un − u0)
2⟩ ∝

∫ π
a

1
a|n|

dk kCuu(|k|)

∝
∫ π

a

1
a|n|

dk
S(|k|)

k

∝
{

S0 log(|n|) if S(k) = S0 +O(k)
S1 if S(k) = S1k

β +O(kβ+1)

(17)

with β > 0.

D. Breakdown of the HMW theorem

The breakdown of the HMW theorem when Tcom = 0
ultimately stems from the fact that large wavelength
phonons are thermalized with a bath at 0 effective tem-
perature; a temperature for which, even at equilibrium,
long-range order is expected by the HMW theorem. In
this sense, the theorem is broken in a way expected
from its equilibrium definition while simultaneously be-
ing strongly broken since the large-scale SDF at k → 0
is constant and does not diverge at all. This can be
traced back to the strong hyperuniformity S(k) ∼ k2 of
our system. We remark that our rationalization of the
emergence of stable long-range order based on large wave-
length phonons thermalizing at a vanishing effective tem-
perature can be applied also for the non-equilibrium crys-
tal obtained with the random organization model [32].

It is important to note that an exponent 2 for the small
k structure factor is not a necessary condition to break
the HMW theorem. Indeed, as understood from Eq.
(17), any hyperuniformity in 2D would sufficiently reduce
the divergence of the SDF to allow long-range order. This
mechanism parallels bird-flocking dynamics, where align-
ment among neighbors reduces the infrared divergence of
the correlation functions to a scaling of 1/ka with a < 2
[11, 13], allowing for long-range order.

From a mathematical point of view this breakdown of
the HMW theorem in the case Tcom = 0 at finite γcom
is manifested through the regularization of the infrared
divergence of the integral used to compute the displace-
ment correlation function (Eq. (C1)) via γcom:

⟨(un − um)2⟩ ≃ 2a2

Kπ

∫ π
a

1
a|n−m|

dkk

(
1

ω2
k

Tcom

1 + (ωk/δ)2

+
Tloc

δ2 + ω2
k

)
.

(18)

When Tcom = 0, the first term vanishes. In the second
term, the phonons exhibit a behavior akin to particles
with an effective ”mass”

√
Kδ =

√
Kγcom/γloc and an

adimensionalized dispersion relation Ωk =
√
δ2 + ω2

k. In-

deed, an equilibrium system with Hamiltonian [68]:

H/K =
a2

2

(
2Tr

[
u · uT

]
− Tr [u]2

)
+

δ2

2
u2, (19)

with u the infinitesimal strain tensor: u = (∇u +
(∇u)T )2, would produce a similar equilibrium displace-
ment correlation. This effective mass pins down the par-
ticles on their ideal lattice position allowing long-range
order. Of course, when Tcom ̸= 0, the first term of Eq.
(18) becomes significant at small k and induces the log-
arithmic divergence at large scales discussed above.
It is interesting to note that hyperuniformity of equi-

librium crystals is solely achieved through long-range or
external interactions [33], in contrast with our system
and that of others, where hyperuniformity is allowed
through the breakdown of the FDT and correlated noise
[24, 26, 82–84]. This is reminiscent of long-range cor-
relations induced by bulk conservation law and dissipa-
tion in self-organized criticality [44, 53, 85–92]. See Ref.
93 for a recent review. Moreover, COM conservation is
not the only route to hyperuniformity and systems with
multiplicative [82, 94] or time correlated noise can have
suppressed long-range fluctuations [24, 35]. Additionally,
recent work on particular non-equilibrium collective ex-
citations in active solids, known as entropons [67, 95],
highlight that on a general basis, active forces only add
an additional term to the SDF, linked to entropy pro-
duction but do not affect its phononic part. Thus, ac-
tive forces alone cannot tame the 1/k2 divergence of the
phononic part of the equilibrium SDF and in general,
increase the density fluctuations [27–29]. Indeed, active
short-ranged systems exhibiting hyperuniformity usually
lose this property in the presence of a global thermal
equilibrium-like noise [36, 37, 96, 97]. This supports the
idea that non-equilibrium-like colored or multiplicative
noises are crucial for hyperuniformity and translational
long-range order in 2D crystals featuring short-ranged
interactions. Further discussions about entropons in our
system can be found in Appendix D. Note however, that
hyperuniformity in passive or active scalar field theories
has been found even in the presence of a thermal noise
for model B type equations [98–101].
Of course, the analysis performed so far predicts the

violation of the HMW theorem only in the singular limit
Tcom = 0, γcom ̸= 0. However, the results obtained in
Sec. II C suggest how to approach this physical condi-
tion when Tcom ̸= 0. Indeed, the key quantity that con-
trols the strength of the quasi-long-range order (and its
possible limit to true long-range) is the exponent of the
algebraic decay of the translational correlation function
for |n −m| ≫ δ−1 in Eq. (16) which is proportional to
the ratio Tcom/K. This means that, for a finite Tcom, one
can still obtain an arbitrary slow decay by increasing the
elastic constant K. This is clearly a quite limiting and
trivial way to enhance the quasi-long-range order of the
system since it consists of a direct increase of the parti-
cle interaction strength and would also work at equilib-
rium. However, in the next section, we will see how the
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phenomenology of a realistic model of a non-equilibrium
crystal can be mapped into the one of our model with an
effective K which depends on the non-equilibrium prop-
erties of the realistic system (i.e. dissipation and driving
parameters). This will be the key point of our strategy
to enhance quasi-long-range through non-equilibrium ef-
fects.

III. HARD-DISK CRYSTAL DRIVEN BY
ACTIVE COLLISIONS

A. A coarse grained model

We explore a practical application of our theoretical
framework to investigate the breakdown of the HMW
theorem and the dependence of (quasi-)long-range order
on the noise in realistic non-equilibrium systems. To con-
duct this investigation, we use the model introduced in
Ref. 38 with an additional global noise. This can be
thought as an underdamped continuous-time analogue
of a random organization model [102] describing sheared
suspensions [103]. In the absence of global noise, these
models present an absorbing phase transition, are hype-
runiform [33] at the transition point [73, 82] and, if the
COM is conserved, in the active state [26, 72, 75]. As
will be further discussed in the conclusion, this model
has been used to describe the experimental realization of
vibrated quasi-2d granular systems [38, 104, 105].

We study this system by performing hybrid event-
driven/time-stepped molecular dynamics simulations
[106] (see Appendix E) of N active hard disks of diame-
ter σ and mass m in a 2D square of size L with periodic
boundary conditions. We define an arbitrary unit of time
τ̂ . The (granular) temperature T of the system is defined
as its global kinetic energy:

T =
1

2
m

N∑

i=1

v2
i , (20)

with vi the velocity of the particle i. The disks experience
a global white bath during their free flight:

dv

dt
= −γcomv +

√
2γcomTcomη(t), (21)

with

⟨ηαi (t)ηβj (t′)⟩ = δ(t− t′)δi,jδ
α,β ⟨ηαi (t)⟩ = 0. (22)

Upon collision, two disks undergo a momentum-
conserving active collision [104, 107, 108]:

v′
i = vi +

1 + α

2
(vij · σ̂ij)σ̂ij +∆σ̂ij

v′
j = vj −

1 + α

2
(vij · σ̂ij)σ̂ij −∆σ̂ij ,

(23)

where 0 ≤ α ≤ 1 is the coefficient of restitution, ∆ > 0
is a velocity injection term, v′

i the post-collision velocity
of particle i, vi its pre-collision velocity, and σ̂ij and vij

are respectively the unit vector joining particles i and
j and the relative velocity between them. In the limit
∆ = 0, the usual collision rule of dissipative hard disks
is recovered.
As evidenced by the energy change during a collision

E′−E = m∆2+mα∆|vij ·σ̂ij |−m
1− α2

4
|vij ·σ̂ij |2,

(24)

the parameter ∆ controls the intensity of the energy in-
jection at collision. These collisions will thus play the
role of the momentum-conserving bath introduced in Sec.
II at temperature Tloc and associated effective damping
γlocω

2
k.

Hence, to recapitulate the differences and similarities
between the harmonic crystal presented in the theory and
the granular hard disks of interest here: both models feel
an external global Gaussian bath at temperature Tcom

and damping γcom, however, the active collisions in the
granular system are modeled as an effective local bath
at temperature Tloc and damping γcomω2

k in the theory.
From a physical standpoint, the effective Tloc in the gran-
ular system is technically a function of every parameter
of our simulation including, Tcom and γcom because the
energy change at the collision depends on the relative
velocities of the particles colliding, as understood from
Eq. (23), which are affected by the global bath and the
packing fraction. This will not change the physical pic-
ture given in this article nonetheless, we should keep it in
mind. This peculiarity is further discussed in Appendix
F.
When Tcom = 0, the dynamics given by Eq. (23) and

(21) conserves the position of the COM if the initial to-
tal momentum of the system is equal to 0 (otherwise,
it exponentially relaxes to 0). Hyperuniformity is thus
expected [26] and we recover the system studied in Ref.
38 with an absorbing state at low density (a feature ab-
sent in the lattice model because Tloc is independent on
Tcom and γcom). Indeed, at low density or packing frac-
tion ϕ = Nπσ2/4L2, the active collisions cannot com-
pensate for the energy dissipated by the drag during the
free flight leading the system to an arrested state. Denser
systems attain an active steady state where the energy
injection at collision is compensated by the dissipation of
the damping.

B. Hyperuniformity and long-range order

To investigate the crystalline order in this system, we
simulate crystalline configurations at ϕ = 0.75 which sets
the lattice spacing a. This packing fraction corresponds
to systems with long-range bond orientational order at
equilibrium [109] but can give rise to a hexatic or a liq-
uid phase in highly dissipative granular systems [110].
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FIG. 2. Long-range behavior of three different crystalline systems with Tcom = 0. ”Equilib.” corresponds to pure hard disks
(α = 1, ∆/στ̂−1 = 0 and γcom = 0), ”∆” corresponds to hard disks with active collisions (α = 0.95, ∆/στ̂−1 = 0.015 and
γcom/τ̂ = 0) and ”∆+ γcom” corresponds to hard disks with active collisions and global damping (α = 0.95, ∆/στ̂−1 = 0.015
and γcomτ̂ = 0.02). a) Structure factor of the three systems for three different system sizes in log-log scale. The dashed line
represents a power law scaling of k−2. The inset is the same plot for the static velocity factor. b) Value of the plateau of
the MSD of the three systems as a function of the number of particles, averaged over five different realizations in semi-log.
The dashed line is a fit of the logarithmic increase of the equilibrium curve. c) Translational correlation function of the three
systems as a function of the distance in log-log with N = 440538. The dashed line corresponds to the expected power law
scaling of gG extracted from the logarithmic increase of the equilibrium curve in b).

To avoid these scenarios, we choose a relatively high
α ≥ 0.95 and always check that the crystalline phase
is stable. For simulations at Tcom = 0, we stay away
from the absorbing region by choosing γcom and ∆ such
that ϕ ≫ ϕc, ensuring a sufficiently high energy injection
at collision.

We first perform a similar analysis as the one done in
Ref. 32, fixing the COM by setting Tcom = 0. The re-
sults for three different systems are depicted in Fig. 2.
Panels a), b) and c) show respectively the structure factor
(and the static velocity factor in inset) as a function of k,
the long-time behavior of the mean square displacement
(MSD) for different system sizes and finally the transla-
tional correlation function as a function of the distance.
The three quantities contain the same information ex-
pressed differently. It is illuminating to analyze all three
together to better understand the theory given in Sec. II
and verify its consistency. We note that the MSD of a
particle in a finite crystal reaches a plateau at large times.
The value of this plateau is of course dependent on the
size of the cage made by neighboring particles but also
on the collective excitations that induce vibrations on the
crystal. From the Fourier transform of the displacement
ũk(w), it can be shown that the correlation ⟨(un−um)2⟩
for an infinite system corresponds to MSD(t → ∞) for a
system of size (a|m−n|)2 in the large system size limit.
We chose to use the MSD instead of the displacement
correlation to check relations derived in the theory part
involving the displacement correlation, the former being

simpler to measure.
We first focus on the curves ”Equilib” which corre-

spond to an equilibrium system of pure hard disks (α = 1,
∆ = 0 and γcom = 0). As expected, its structure factor is
approximately flat (it has in reality an Ornstein-Zernike
shape due to the non linear interactions [70]) and reaches
a well defined value at small q. Its large time MSD grows
as a unique logarithm of the particle number as predicted
by Eq. (15) and thus its correlation function decreases as
a power law with an exponent linked to the logarithmic
decrease of the MSD as given by (16) and illustrated with
the dashed lines. The system displays quasi-long-range
order.

We now turn to the ∆ model, a system with only ac-
tive collision and no global damping (α < 1, ∆ ̸= 0
but γcom = 0). Its structure factor has a transient hy-
peruniform scaling before reaching a plateau at small q.
The same behavior is found for the static velocity fac-
tor. This is incompatible with the modelization of the
active collision as an FDT respecting bath at tempera-
ture Tloc and damping γlocω

2
k. Indeed, if the active col-

lisions were acting on a coarse grained level like such an
equilibrium bath, the structure factor should have re-
sembled the Equilib one. It can be shown that the fast
temperature field is highly out-of-equilibrium and acts
as a genuinely non-equilibrium bath for the slow veloc-
ity field. This effect induces the observed decay. This is
however not the main concern of this paper and does not
change the phenomenology observed when an additional
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FIG. 3. Quasi-long-range order dependence on COM temperature. a) Simulation of a system of active hard disks at fixed
∆/στ̂−1 = 0.04, γcomτ̂ = 0.3 and α = 0.95 for different values of the global Langevin bath temperature Tcom at fixed γcom. We
assume Tloc is fixed and given by Eq. (F2). The main figure shows the dependence on Tcom (color) of the plateau of the MSD
for various system sizes. T is the kinetic energy of the system (see Eq. (20)). The coefficient in front of the logarithmic increase
of the MSD κ is shown in the inset as a function of Tcom/T . A linear scaling is given by a grey dashed line as a guide. b)
Scaling of the logarithmic increase of the MSD for multiple systems with various ∆ and γcom at fixed Tcom/m(στ̂−1)2 = 0.0025.
The underlying finite size analysis on the MSD is performed for 30 systems ranging from N = 29946 to N = 1000680 for each
point. A linear scaling is given by a grey dashed line as a guide.

global damping is added. Hence, the study of this pecu-
liar bath is left for future investigations. The large time
MSD of the ∆ model displays two distinct logarithmic
increases corresponding to the two plateaus reached at
large and low q by the structure factor. While the mech-
anism behind this double logarithmic scaling differs from
the one arising due to the difference of temperature be-
tween a global and a local COM conserving bath in Eq.
(15) (here we recall that there is no global bath since
γcom = 0), the mathematics remain the same, as the low
k structure factor is related to the SDF and consequently
the MSD, through Eq. (17). At small wavectors, we con-
clude that any 2D isotropic harmonic crystal displaying
a hyperuniform scaling in k ∈ [k1, k2] and otherwise a
constant structure factor, will exhibit this double loga-
rithmic scaling on the displacement correlation; one in
the region r ≫ 2π/k1 and one in r ≪ 2π/k2 with a tran-
sition region in between. S(k → 0) and S(k → ∞) will
respectively be proportional to the prefactor of the long
and short range logarithmic increase of the MSD. If the
hyperuniformity extends to k1 = 0 the plateau of the
MSD eventually reaches a constant. The translational
correlation function of the ∆ model exhibits as well a
double power law decrease, in line with the double loga-
rithmic increase of the plateau of the MSD. The system
displays quasi-long-range order as well.

Finally, by introducing a global damping γcom ̸= 0
to the ∆ model but still with Tcom = 0, we obtain
the ”∆+ γcom” system which exhibits hyperuniformity
on large length scales with a power law consistent with
S(k) ∼ k2, as predicted in Eq. (13). From the static
velocity factor, we confirm that the energy is not evenly
distributed across scales but concentrated at fine ones
and depleted at larger ones with a k2 power law de-
crease. From the MSD we observe an initial logarithmic
increase followed by a plateau, in line with Eq. (16) when
Tcom = 0. This implies the reaching of a constant value
for the correlation function at large distances, which is
the hallmark of translational long-range order and the
breakdown of the HMW theorem, as expected when the
COM is conserved in the presence of global damping.

C. Arbitrary enhancement of quasi-long-range
order via non-equilibrium effects

We now turn to the analysis of our full system with
Tcom ̸= 0 and will show that the relevant temperature
is, as expected from the theory, the temperature of the
COM and not the temperature of the system T or the
temperature of the active collisions Tloc. Results for a
range of temperatures Tcom of the global bath are pre-
sented in Fig. 3a). In the main figure, we show various
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curves of the plateau of the MSD versus the number of
particles in the system N for different Tcom in a semi-log
scale. We ensure N is sufficiently large to only observe
the MSD scaling associated with the COM temperature.
As expected from Eq. (15), the increase of the MSD is
logarithmic and is greater the larger is Tcom. Of course,
we recover a true long-range order in the limit Tcom → 0
with a flat plateau of the MSD. In the inset, we extract
the coefficient κ in front of the logarithmic increase of
the MSD as a function of Tcom. That is:

MSDTcom
(t → ∞) = κ(Tcom) log(N). (25)

This quantity could have equivalently been obtained from
the exponent of the correlation function or from S(0).

For a harmonic crystal, κ corresponds, up to a constant
factor, to the exponent of the power law decay of the
translational correlation function (see Eq. (15) and (16))
and is given by

κ ∼ Tcom/K. (26)

However, this simple linear increase of κ with Tcom holds
only for harmonic crystals, not for a crystal of active hard
disks. The elastic modulus of an equilibrium hard-disk
crystal scales trivially with the temperature of the system
T [111–113]:

K(T ) = K̄T. (27)

This implies that the scaling of the MSD of an equilib-
rium hard-disk system is not expected to grow with the
temperature since Tcom = T . While our system is a non-
equilibrium hard-disk solid, we make the assumption that
Eq. (27) is still a good approximation for the effective
elastic constant, thus predicting the following scaling:

κ ∼ Tcom

T
. (28)

This scaling is well verified in our case, as observed in the
inset of Fig. 3 where the dashed line represents a linear
increase of κ with Tcom/T .

In panel b), we performed the same simulations as for
panel a), except that we varied ∆ and γcom at fixed Tcom.
We observe again approximately a linear scaling of κ as a
function of Tcom/T implying that the effective constant
of the lattice was roughly constant.

These two analyses indicate that as predicted from the
theory, for active hard sphere crystals the relevant pa-
rameter to manipulate in order to slow down the decay
of the translational quasi-long-range is Tcom/T . Counter-
intuitively, this implies that increasing the kinetic energy
of the system at a fixed center of mass temperature in-
creases the quasi-long-range order. Indeed, we can obtain
the same enhancement of quasi-long-range order given by
the reduction of Tcom by keeping it fixed while varying
the driving and dissipative parameters ∆ and γcom.

IV. CONCLUSIONS AND PERSPECTIVES
TOWARDS REALISTIC SYSTEMS

In this paper, we studied the Hohenberg-Mermin-
Wagner theorem’s applicability to non-equilibrium sys-
tems. By examining a theoretical model of a harmonic
crystal coupled to a local and a global thermal-like bath,
we find that translational long-range order is controlled
by the temperature of the center of mass, rather than the
overall kinetic energy, as in equilibrium systems. This re-
sult also offers a way to better rationalize the violation
of the HMW theorem observed in the random organiza-
tion model [32] via a k-dependent temperature. More-
over, through numerical simulations of a hard-disk solid
driven out-of-equilibrium by active collisions we showed
the possibility to suppress density fluctuations and en-
hance quasi-long-range translational order without ne-
glecting or fine-tuning thermal fluctuations. These in-
sights provide a valuable theoretical understanding of
crystalline phases in non-equilibrium systems.

To conclude, we outline a possible application of our
results to suppress density fluctuations in a realistic gran-
ular system. From the analysis provided in the previous
sections, it is clear that an equilibrium-like global thermal
noise prevents long-range translational order and hyper-
uniformity in both the harmonic and the hard-disk driven
solid. In these systems, only the exponent of the power-
law decay of the correlation function can be tuned. How-
ever, true hyperuniformity or equivalently long-range or-
der are unachievable. One might be tempted to think
that athermal systems, where the effects of thermal fluc-
tuations are negligible, could provide a suitable play-
ground for the actual realization of a two-dimensional
long-range ordered crystal. However, things are not so
simple. Indeed, once global thermal fluctuations are ne-
glected, it remains practically very difficult to realize
a COM-preserving athermal driving mechanism. More-
over, the effect of any confinement will inevitably influ-
ence the COM dynamics. Once this intrinsic difficulty in
realizing true long-range order is accepted, one could still
hope to find a way to arbitrarily enhance the quasi-long-
range order of a system by tuning some experimental
parameters following a methodology similar to that used
for the simulation of the coarse-grained model in Sec. III.

Quasi-2D vibrated granular fluids [38, 114–119] repre-
sent realization of the coarse grained model discussed in
section III . In these systems, macroscopic grains are con-
fined in a box of size L×L×h with h ≪ L the height of
the box. The box is sinusoidally vibrated which imparts
vertical energy to the grains. Collisions between parti-
cles transfer this vertical energy to the xy components
of the velocity. Moreover, tangential friction resulting
from collisions with the top or bottom plates slows down
the beads in the xy plane. When viewed purely in the xy
plane, this system behaves similarly to the coarse-grained
model discussed in section III. Indeed, collisions between
particles inject energy into the xy plane and play the
same role as the ∆ in Eq. (23) while the damping γcom
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during the free flight in the coarse-grained model is equiv-
alent to the energy loss due to collisions with the roof and
the bottom plate in the quasi-2D system. Moreover, the
roughness of the two horizontal confining plates implies
that each grain-plate collision introduces some random-
ness to the velocities (without even considering the an-
gular momentum of the grains). Remarkably, this effect
has been found to act as a small homogeneous thermal
noise [42] which can be mapped into an effective global
temperature Tcom. The fact that this realistic setup is
correctly described by the coarse grain model suggests
the possibility of enhancing the quasi-long-range order by
tuning the experimental parameters (driving amplitude,
frequency, material properties, . . . ) to reduce as much as
possible the ratio between the effective Tcom caused by
the plate roughness and the horizontal kinetic energy of
the system T . Of course, the specific way in which the
experimental parameters influence Tcom and T can be
very complex, but after some preliminary analysis, one
might in principle be able to find the right combination of
them to vary in order to arbitrarily reduce Tcom/T . We
look forward to applying these ideas to realistic granular
quasi-2D systems in future studies.
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Appendix A: Discrete real space conserving noises
for vectorial quantities

In Sec. II, we introduced a momentum conserving
noise. On a general lattice, such noise can be written
as:

mün = −γlocΛ(u̇n) +
√
2γlocTloc(∇ ·Ξn). (A1)

The first term is a discrete Laplacian and the second is
a discrete divergence of a rank 2 random tensor. Once
the discrete differential operators are well defined, this
equation can be understood as a discrete analogue of the
model B field theory. Note however that the global con-
servation of momentum depends on boundary conditions.

On a general basis, any lattice can be understood as
a graph G with a set of vertices V and edges E connect-
ing them. The usual notion of continuous field living on
Rd (or more generally on a manifold) is replaced by the
notion of field living on vertices and mapping vertex to
vectors. For example in our case u : V → R2. The com-
plexity of dealing with discrete calculus on lattices lies

in the fact that the discrete gradient maps fields living
on vertices to fields living on the edges while the dis-
crete divergence maps fields living on the edges to fields
living on the vertices [120, 121]. Hence, the Laplacian
being the composition of the divergence with the gradi-
ent maps fields leaving on the vertices to fields living on
the vertices. This immediately implies that the diver-
gence in Eq. (A1) is ill defined since we are applying it
on a (random) field living on the vertices and not on the
edges. Nonetheless, following Ref. 66, we will see that
this term can be represented through a finite difference
of random vertices field and be made well defined. More-
over, in order for the dynamics to be equilibrium-like, the
discretization scheme of the differential operators as well
as the variance of the noise must be well chosen in order
to respect the FDT.

Indeed if we start from a definition of the derivative as
a finite difference of terms. We can write the divergence
of a tensor ∇ ·an as finite differences between neighbor-
ing points. Then, the corresponding discrete Laplacian
Λ takes the form Λ(an) = ∇ · (∇an) where ∇ is a gra-
dient defined from the chosen finite difference used for
the derivative. With these choices, taking Ξ with unit
variance leads to a dynamics that correctly respects the
FDT.

As an example, if we define the derivative on a square
lattice as the forward finite difference, then:

∇ ·Ξi,j =

(
Ξx,x
i+1,j − Ξx,x

i,j + Ξx,y
i,j+1 − Ξx,y

i,j

Ξy,x
i+1,j − Ξy,x

i,j + Ξy,y
i,j+1 − Ξy,y

i,j

)
, (A2)

where we replaced the usual lower vectorial index n by
2 indexes i and j denoting the x and y position on the
lattice. Then, we can check that if Ξ has unit variance:

⟨Ξα,µ
i,j (t)Ξβ,ν

k,l (t
′)⟩ = δ(t′ − t)δα,βδµ,νδi,kδj,l, (A3)

then:

⟨(∇ ·Ξi,j(t))
α(∇ ·Ξk,l(t

′))β⟩ =δα,βδ(t− t′)(4δi,kδj,l−
δi+1,kδj,l − δi,kδj+1,l−
δi−1,kδj,l − δi,kδj−1,l).

(A4)

Where we recognize the discrete Laplacian found for sim-
ple forward finite differences, a sum over first neighbors.
A different discretization of the derivative (Eq. (A2))
would have given us a different correlation correspond-
ing to the adequate Laplacian to use in order for the
system to respect the FDT. For example, a symmetric
representation of the derivative would have given rise to
a Laplacian with second neighbors [48]. Conservative dis-
crete equations in real space have been used in a plethora
of domains [48, 51, 66, 122, 123] and naturally arise when
a stochastic partial differential equation is discretized to
be solved numerically.
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Appendix B: Fourier transform convention

We choose the following convention for the semi-
discrete Fourier transform:

f̃k(w) =

∫ ∞

−∞
dt

1

N

∑

n

eiwt+iak·nfn(t)

fn(t) =
1

(2π)3

∫ ∞

−∞
dw

1

N

∑

k

e−iwt−iak·nf̃k(w)

(B1)

with k = 2πn/L and nα ∈ −
√
N/2 + 1, . . . ,

√
N/2.

When the spatial continuous limit is taken, we obtain
the following Fourier series representation of the real lat-
tice:

fn(t) =
1

(2π)3

∫ ∞

−∞
dw

a2

(2π)2

∫ π/a

−π/a

dke−iwt−iak·nf̃(k, w).

(B2)
This follows directly from taking the limit a → 0 while
keeping L fixed (or L → ∞ at fixed L/

√
N = a) and

corresponds to an integration in the first Brillouin zone.

Appendix C: Computation of the displacement
correlation function

The displacement correlation function is computed in
the infinite size limit where the discrete Fourier transform
over wavevectors is approximated as a continuous Fourier
transform (see Appendix B):

⟨(un − um)2⟩ = a4

(2π)4

∫
dkdq(eiak·n − eiak·m)

× (eiaq·n − eiaq·m)⟨ũ(k, t = 0)ũ(q, t = 0)⟩

=
a2

2π2

∫
dk(1− cos(ak · (n−m))Cuu(k)

(C1)

Since we only are interested in the (quasi-)long-range
behavior of our system, we compute the long distance
limit of this object. We decompose the integral into two
intervals. From 0 to 1/a|n − m|, if Tcom ̸= 0 the inte-
gral is bounded by a term in 1/ω2

k and can be neglected.
For the second interval from 1/a|n−m| to 2π/a, the os-
cillating part averages out. Similar arguments work for
Tcom = 0. Up to a constant, at long distances, Eq. (C1)
is thus approximated as:

⟨(un − um)2⟩ ≃ a2

π

∫ π
a

1
a|n−m|

dkCuu(k)k

≃
[
(T − Tcom) log

γcom/γ + π2

γcom/γ + 1/|n−m|2

+ 2Tcom log(π|n−m|)
]
/πK

≃





2Tcom

πK
log(π|n−m|) |n−m| ≫ δ−1

2Tloc

πK
log(π|n−m|)) |n−m| ≪ δ−1.

(C2)

which gives Eq. (15).

Appendix D: Entropons in a two temperature delta
correlated bath

Entropons, as discussed in Caprini et al.’s recent work
[67, 95] are general non-equilibrium collective excitations
linked to the spectral entropy production and are a con-
sequence of a Harada-Sasa like relation [95, 124, 125].
Indeed, for a generalized Langevin equation:

¨̃uk(t) = −Kω2
kũk −

∫ ∞

−∞
dt′Γ(k, t− t′) ˙̃uk(t

′) + F + Ẽk(t),
(D1)

with Γ(t) the friction kernel and ⟨Ẽk(t′)Ẽq(t)⟩ = ν̃(k, t −
t′)δk,−q, we can prove that, if the force F is even under
time reversal the following relation holds [126]:

Cuu(k,w)

ν(k,w)
=

ℑ(R(k,w))

wℜ(Γ(k,w)) +
σg(k,w)

2ℜ(Γ(k,w))2w2
, (D2)

where

σg(k,w) = 2ℑ⟨ũ(k,w)F (−k,−w)⟩ℜ(Γ(k,w))ν−1(k,w)w
(D3)

is the entropy production of the generalized Langevin
equation, R(k, w) is the response of the displacement
to an instantaneous force while ℜ and ℑ are the real
and imaginary part of the function in front of it. Note
that this formula holds independently on the choice of
the noise correlation and damping. Notably in the
case we are interested, Γ(k,w) = γcom + γlocω

2
k and

ν(w)/Γ(k,w) = 2T̃k, without additional forces, the spec-
tral entropy production σg is equal to 0 and the non-
equilibrium character of the system is only included in
the effective temperature Teff(k,w) = ν(k,w)/(2Γ(k,w)).
In this sense, we might consider that entropons are ab-
sent and only phonons at an effective temperature exist
in our system since the dynamic SDF reads:

Cuu(k,w) =
2T̃k

w
ℑ(R(k,w)). (D4)
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The entropy production equal to 0 might come as a
surprise since it is clear that as long as Tcom ̸= Tloc, heat
flows from one reservoir to another and thus entropy is
continuously created. However, the particle itself is obliv-
ious to these heat transfers between baths because they
collectively act as a unique equilibrium-like reservoir with
an effective temperature and viscosity [127–129]. From
the point of view of the particle, the system is thus too
coarse-grained to probe these non-equilibrium effects and
heat fluxes between reservoirs are invisible to dynamical
observables [130, 131].

To circumvent this issue, we can rewrite our model in
an equivalent form for the particle, with an auxiliary vari-
able [131–139]. This auxiliary variable provides enough
information about the system to probe the heat fluxes
between reservoirs and compute the spectral heat flow
between them. The heat flux for Eq. (6) is given by
[132]:

mQ̇(k,w) =
4γcomγlocω

2
k(Tcom − Tloc)w

2

(Kω2
k −mw2)2 + (γcom + γlocω2

k)
2w2

.

(D5)
From which we can prove in our system without addi-
tional forces that:

Cuu(k,w) =
2Tloc

w
ℑ(R(k,w)) +

1

2w2γlocω2
k

Q̇(k,w),

(D6)
or

Cuu(k,w) =
2Tcom

w
ℑ(R(k,w))− 1

2w2γcom
Q̇(k,w). (D7)

The first term represents the usual equilibrium phonons
at temperature Tloc while the second term is clearly a
non-equilibrium term, vanishing when Tcom = Tloc and
proportional to the heat transferred between reservoir.
This new term, arising from a rewriting of the effective
temperature is very similar to entropons except that it is
better written as proportional to the heat transfer in-
stead of the entropy production due to Fourier’s law.
Note however that, contrary to entropons arising from
active forces, this new term might be negative accord-
ing to which bath we chose as the one with the reference
temperature in front of the linear response function.

The equivalence between Eqs. (D6)-(D7) and Eq. (D4)
can be proved more generally with multiple exponen-
tially correlated reservoirs and external non-conservative
forces using the markovian auxiliary variable represen-
tation of the generalized Langevin equation. Hence, for
non-interacting systems, the effective temperature in k, w
space, obtained from the ratio between the autocorrela-
tion and the response function can be expressed as the
temperature of a bath plus terms proportional to the
heat flow between all the other baths. We look forward
to developing these ideas in future work.

Appendix E: Hybrid event-driven/time-stepped
molecular dynamics

Since the potential of hard-disks particles is discontin-
uous, usual time-stepped molecular dynamics methods
are not suitable for simulations of such systems. Instead,
we use event-driven methods [106] where the time before
the collision of two particles i and j denoted tcolij can be
analytically computed:

|ri(tcolij ) + rj(t
col
ij )| = σi + σj

2
, (E1)

with ri(t) the position of particle i at time t. For particles

free flying or undergoing constant viscous drag, tijcol can
be found exactly from the initial velocities and positions
of the particles.
For viscous friction, the time before the next collision

is:

tcolij = − log (1− γcomδtij) /γcom, (E2)

with:

δtij =
−b−

√
b2 − v2

ij(r
2
ij − (σi + σj)2/4)

v2
ij

(E3)

where b = rij · vij and rij and vij are respectively the
relative position and velocity of particles i and j at the
moment the subsequent collision time is computed. From
every collision time and the collision rule (23) the full dy-
namics of the system can be solved exactly in the absence
of Tcom. When the bath has a non-zero temperature,
we must include the effect of the thermostat in the sys-
tem by adding events every δtnoise where each particle is
kicked by an amount

√
2γcomTcomδtnoise/m. The FDT is

respected for every value of δtnoise because of the contin-
uous nature of the damping [140]. We nonetheless chose
δtnoise ≪ τf ≡ 1/ω(ϕ, T ) the mean free time.

Appendix F: Temperature of the active collision
bath

For the model including only active collisions (γcom =
0), the average energy change during a collision can be
obtained from the collision rule (24):

⟨E′ − E⟩coll = m∆2 +mα∆⟨|vij · σ̂ij |⟩coll

−m
1− α2

4
⟨|vij · σ̂ij |2⟩coll, (F1)

where the average can be computed from the assumption
of molecular chaos, gaussianity and using the cross sec-
tion of hard disks [38, 104, 141]. In the steady state, on
average collisions do not inject or retrieve energy from
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the system. The steady-state temperature Tloc is thus
given by the zero of Eq. (F1) which is [104]:

Tloc = ∆2

(
ϵ+

√
ϵ2 + 4m(1− α2)

2(1− α2)

)2

(F2)

with ϵ = α
√
πm. This can be taken as the temperature

Tloc of the local bath. It can be shown [38] that when
damping is added to the system, far from the absorbing
state, the new temperature of the system T keeps the
exact same form as Eq. (F2) but with ϵ = α

√
πm −

γcomσ
√
πm/2∆ϕχ(ϕ) with χ(ϕ) the radial distribution

function at contact.
This implies that the temperature of the system T does

not behave as the temperature of a system subject to a
Langevin bath at temperature Tloc and damping γlocω

2
k

on top of which we add an additional damping γcom.
This is due to the dependence of Eq. (F1) on the relative
velocity of particles at collision which indicates that Tloc

should itself be dependent on the other sources of energy
change in the system. It will not cause any significant
practical problem but this is a peculiarity that should be
kept in mind.
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