
A meta inspiral-merger-ringdown consistency test of general
relativity with gravitational wave signals from compact
binaries

Sakshi Satish Madekar
Department of Physical Sciences, Indian Institute of Science Education & Research (IISER)
Mohali, Sector 81 SAS Nagar, Manauli PO 140306, Punjab, India

Nathan K Johnson-McDaniel
Department of Physics and Astronomy, University of Mississippi, University, Mississippi
38677, USA

Anuradha Gupta
Department of Physics and Astronomy, University of Mississippi, University, Mississippi
38677, USA

Abhirup Ghosh
Trade Republic Bank GmbH, Brunnenstraße 19-21, 10119 Berlin, Germany

Abstract. The observation of gravitational waves from compact binary coalescences is a
promising tool to test the validity of general relativity (GR) in a highly dynamical strong-field
regime. There are now a variety of tests of GR performed on the observed compact binary
signals. In this paper, we propose a new test of GR that compares the results of these individual
tests. This meta inspiral-merger-ringdown consistency test (IMRCT) involves inferring the
final mass and spin of the remnant black hole obtained from the analyses of two different tests
of GR and checking for consistency. If there is a deviation from GR, we expect that different
tests of GR will recover different values for the final mass and spin, in general. We check the
performance of the meta IMRCT using a standard set of null tests used in various gravitational-
wave analyses: the original IMRCT, parameterized phasing tests (TIGER and FTI) and the
modified dispersion test. However, the meta IMRCT is applicable to any tests of GR that
infer the initial masses and spins or the final mass and spin, including ones that are applied to
binary neutron star or neutron star–black hole signals. We apply the meta IMRCT to simulated
quasi-circular GR and non-GR binary black hole (BBH) signals as well as to eccentric BBH
signals in GR (analyzed with quasicircular waveforms). We find that the meta IMRCT gives
consistency with GR for the quasi-circular GR signals and picks up a deviation from GR in
the other cases, as do other tests. In some cases, the meta IMRCT finds a significant GR
deviation for a given pair of tests (and specific testing parameters) while the individual tests
do not, showing that it is more sensitive than the individual tests to certain types of deviations.
In addition, we also apply this test to a few selected real compact binary signals and find them
consistent with GR.

1. Introduction

Gravitational wave observations now regularly provide us with direct information about the
highly dynamical strong-field mergers of binaries of black holes and neutron stars. The most
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recent completed observing run (O3) has brought the total number of detection candidates
to around 100 [1], and the ongoing observing run (O4, with some initial results released
in [2]) will considerably increase this number. There is now a considerable variety of tests
of general relativity (GR) applied to the most confident detections—see [3–6] for work by
the LIGO-Virgo(-KAGRA) (LVK) collaboration ‡ and [7] for an overview of some of the
other tests being applied or proposed. However, all the tests currently applied are null tests
of some type—none of them is testing a specific alternative theory. Moreover, it is not clear
to what extent they are sensitive to various possible deviations from GR. There are now some
initial studies of the relation between a selection of these tests, looking at how they respond
to various phenomenological non-GR signals [7] or signals beyond the standard quasicircular
binary hypothesis used in the application of the tests [8]. However, there is still much to be
done to understand the extent to which these tests are complementary or redundant.

Here we propose a new method for comparing tests of GR, which itself provides
yet another test of GR. Specifically, we generalize the inspiral-merger-ringdown (IMR)
consistency test for binary black hole (BBH) signals introduced in [9, 10] (which checks the
consistency of the low- and high-frequency portions of the signal) to compare the posterior
probability distributions for the mass and spin of the final black hole from two different tests
of GR. As noticed in [7], these distributions are often quite different when different tests of
GR (including different versions of the same test, e.g. parameterized tests varying different
post-Newtonian parameters) are applied to the same non-GR signal, or when comparing the
results of a test of GR and a standard GR analysis of the signal. In these analyses, the final
mass and spin are calculated by applying fits to BBH numerical relativity simulations that
give the final mass and spin in terms of the binary’s initial masses and spins. Thus, since
the binary’s initial masses and spins are biased in different ways for different analyses when
attempting to reproduce a non-GR signal, the final mass and spin are also in general biased
differently in different analyses. This is why this method can detect deviations from GR (or,
more generally, deviations from the signal model used in the analysis, which is a quasicircular
binary in all LVK tests of GR).

The standard IMR consistency test (IMRCT) is restricted to binaries in a certain mass
range where there is sufficient signal-to-noise (SNR) in both portions of the signal (see, e.g.
[6]), due to its analysis of the low- and high-frequency portions of the signal independently.
This generalized test has no such restrictions and can even be applied to binary neutron star
or neutron star–black hole binary signals: One can even apply the same BBH fits in this case
when applying the test, since the fits just provide a convenient way of mapping the initial mass
and spin parameter space to a two-dimensional space. In fact, one does not have to apply the
test to the final mass and spin, but could choose other GR parameters to compare. However,
we will not explore this here. The generalized test is also computationally quite efficient, once
one has the results from the individual tests, since it does not require any further stochastic
sampling or evaluation of waveforms.

We illustrate the method, which we refer to as the meta IMR consistency test (or meta
IMRCT), using the results from the tests of GR (and standard GR parameter estimation
analysis) applied to quasicircular GR and non-GR signals from [7] and quasicircular
and eccentric numerical relativity signals from [8] (here only analyzed with quasicircular
waveform models). Specifically, we consider the TIGER [11] and FTI [12] parameterized
tests, the modified dispersion relation test [4, 13], and the standard IMRCT [9, 10]. Like the
individual tests, the meta IMRCT finds quasicircular GR signals in [7, 8] consistent with

‡ We refer to the LV(K) collaboration for cases where the KAGRA collaboration only contributed to some of the
results being referenced.
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GR but reports GR violation for non-GR and eccentric signals. We also apply the meta
IMRCT to the compact binary signals GW170817 [14], GW190412 [15], GW190521 [16],
GW190814 [17] and GW200225 060421 [1], using the results from the LV(K) collaboration’s
application of the aforementioned tests to these events. The meta IMRCT finds consistency
with GR in these cases, as do the individual tests.

The paper is structured as follows: We introduce the existing tests of GR we consider
and the Bayesian inference they are based on in section 2, and then provide the specifics of
the meta IMRCT in section 3. We then give an overview of the simulated observations used to
assess the performance of the tests in section 4 and the results of the meta IMRCT in section 5.
Finally, we conclude in section 6. We use geometrised units with G = c = 1 throughout.

2. Tests of GR

This section provides an overview of standard GR parameter inference and the tests of GR
that the meta IMRCT builds on. The original IMRCT [9, 10], the TIGER [11] and FTI [12]
parameterised tests and the modified dispersion relation test [4,13], are now a staple of testing-
GR analyses by the LVK and others. They have thus been described in detail in previous
publications, e.g. [4–7]. However, given the importance of the details of these analysis in
motivating the meta IMRCT, we provide a brief review here again.

2.1. Bayesian parameter estimation

Before we review the tests, it is worth reviewing our parameter inference framework,
which is Bayesian, as is the case for most of gravitational-wave data analysis. Data
from a gravitational-wave detector is a noisy time series d(t) which occasionally contains
a gravitational-wave signal h(t,λ), where λ denotes the parameters describing the
gravitational-wave signal. The data can thus be written as

d(t) = h(t,λ) + n(t), (1)

where n(t), the noise in detector data, is assumed to be Gaussian and characterised by a
(frequency-domain) power spectral density Sn(f). The gravitational-wave signal is described
by a hypothesis H , which can either be GR or an alternate theory of gravity. Even within GR,
waveforms of signals can be built with varying assumptions, and hence our hypothesis is the
gravitational waveform used in the data analysis. This waveform is usually characterised by
a multi-dimensional parameter set λ, which includes a GR parameter set λGR and, in the case
of a non-GR waveform, any additional non-GR parameter(s) λnGR that describe it.

Given a hypothesis H and any other information I , a posterior probability distribution of
λ, P (λ|d, I), can be inferred using the Bayes Theorem:

P (λ|d, I) ∝ p(λ)L(d|λ, I), (2)

where p(λ) is the prior probability distribution and L(d|λ, I) is the likelihood function, i.e.
the probability of the data being accurately described by a certain parameter choice. Assuming
Gaussian noise, n(t), we have

L(d|λ, I) ∝ exp

[
−1

2
⟨d(t)− h(t,λ) |d(t)− h(t,λ)⟩

]
, (3)

where ⟨·|·⟩ denotes the noise-weighted inner product defined as

⟨a|b⟩ = 2

∫ fhigh

flow

ã∗(f)b̃(f) + ã(f)b̃∗(f)

Sn(f)
df. (4)
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Here ã(f), b̃(f) represent the Fourier transform of a(t), b(t) and flow, fhigh indicate the
frequency cut-offs used in analysing the data which usually coincides with the bandwidth
of the gravitational-wave detector’s sensitivity. In practice, P (λ|d, I) is sampled over the
parameter space stochastically using Metropolis–Hastings Markov-Chain Monte Carlo [18,
19] or nested sampling [20]. Considering the results that we use later, Refs. [7, 8, 14]
used the LALInference code [21], a part of LVK’s LALSuite software library [22] while
Refs. [1, 5, 6, 15–17] used both LALInference and Bilby [23] to construct the posteriors,
P (λ|d, I).

2.2. Inference using the GR model

As mentioned above, we need a hypothesis or waveform model to describe our gravitational-
wave signal. For want of a credible alternative, our dominant hypothesis is GR, and any
investigation into beyond-GR effects starts with setting a GR baseline.

There are three unique phases of a BBH merger: an initial inspiral where the two black
holes slowly coalesce through the back-reaction of gravitational-wave emission, the actual
process of merger whose onset is indicated by the formation of the apparent horizon, and the
post-merger ringdown where the newly formed remnant object settles down to a stable state
through the emission of (a superposition of) exponentially damped sinusoidal gravitational
waves, the quasi-normal-mode spectrum.

In GR, the entire gravitational-wave signal from a quasi-circular BBH merger is
completely described by the masses and spins of the initial black holes, (m1,m2,χ1,χ2),
its position in the sky (α, δ) and orientation (ι, ψ), luminosity distance dL and two
reference quantities for phase and time (ϕc, tc). Together, they form the 15 dimensional
parameter space λGR = {m1,m2,χ1,χ2, α, δ, dL, ι, ψ, ϕc, tc}. Setting the GR baseline
therefore involves performing parameter inference of λGR with a GR waveform model. As
mentioned earlier, these analyses can use a variety of different waveform models with varying
assumptions. In this paper we use results obtained with IMRPhenomPv2 [24–26] for the
GW150914-like and GW170608-like simulated observations and IMRPhenomXPHM [27] for
the quasicircular and eccentric simulated observations using numerical relativity waveforms.
Both of these models describe the waveforms from precessing binary black holes, with
IMRPhenomXPHM including two-spin precession effects and higher-order modes. We
also use results obtained with the slightly earlier precessing model with higher modes,
IMRPhenomPv3HM [28] for some real events, and with the precessing binary neutron star
model IMRPhenomPv2 NRTidal [29, 30] for GW170817.

In our study, we are particularly interested in the mass Mf and spin χf of the remnant
black hole. Analytical fits to numerical relativity simulations can translate our estimates of
the initial masses and spins (m1,m2,χ1,χ2) into the estimates of the final mass and spin
(Mf, χf). The different waveform models incorporate different fits to predict the final mass
and spin. We instead use a single set of fits in this analysis (the same used by the LVK to
infer the final mass and spin in, e.g. [1]) to avoid any biases due to different final mass and
spin fits. Specifically, we use an average of fits to numerical relativity simulations [31–33]
where the aligned-spin final spin fits are augmented with the contribution from in-plane spin
components [34] for precessing waveform models. However, unlike the application in [1],
we do not evolve the initial spins before applying the fits; this is the same procedure used
in the computation of the final mass and spin for the standard IMRCT in the LVK test of
GR analyses [4–6]. Since these fits are just used to provide a physically motivated two-
dimensional parameter space in which to compare the results, the small decrease in accuracy
of the fits due to not evolving the spins is not a concern.
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The absence of a credible alternative to GR also means that most strong-field tests of
gravity are essentially tests of GR, where we measure and constrain possible deviations from
GR predictions. Such tests are called null tests, GR being the null hypothesis. Three of the
most prominent null tests of GR using gravitational-wave observations of BBH mergers are
the IMRCT, parameterised tests of the gravitational waveform and the test of the modified
dispersion relation, as discussed below.

2.3. IMR Consistency Test

The three phases of a BBH merger, as described above, are conventionally pictured in the
time domain (as in figure 2 of [35]). However, under the stationary phase approximation, the
early (late) portions of the time-domain signal corresponds, to a high degree of accuracy, to
the low- (high-) frequency portion of the Fourier-domain signal, as illustrated in [10]. We thus
refer to these portions of the Fourier-domain signal as the inspiral and the merger-ringdown
portions and refer to the dividing frequency as fcut. [The merger-ringdown portion is referred
to as the post-inspiral portion in the LV(K) testing GR catalogue papers [4–6].]

The IMRCT infers the mass and spin of the remnant black hole, (Mf, χf) from the low-
and high-frequency portions of the signal, and compares these estimates with each other. If the
entire gravitational-wave signal is accurately described by our GR hypothesis (and specifically
by the family of waveforms used to carry out the test), then the low- and high-frequency
inferences should correspond to the same underlying signal, or in terms of the remnant black
hole, consistent measurements of (Mf, χf). In order to quantify possible deviations between
the two measurements, we define fractional deviations in the measurement of these quantities
as:

∆Mf

M̄f
= 2

M I
f −MMR

f

M I
f +MMR

f
, (5a)

∆χf

χ̄f
= 2

χI
f − χMR

f

χI
f + χMR

f
, (5b)

where the “I” and “MR” superscripts refer to the inspiral and merger-ringdown portions of the
signal. If GR is correct, the posteriors on (∆Mf/M̄f,∆χf/χ̄f) will be consistent with (0, 0).

The IMRCT takes fcut to be the |m| = 2 gravitational-wave frequency of the innermost
stable circular orbit (ISCO) of the remnant Kerr black hole [36] computed from GR analysis
of the full signal. The LVK analyses [4–6] first compute the medians of the individual masses
and spherical coordinate components of the spins from the GR analysis of the full signal and
then use these values to compute a value for the final mass and spin and thence the ISCO
frequency. The analysis in [8] computes the median of the ISCO frequency of the remnant
Kerr black hole inferred from the GR analysis, but also checks that for the cases they consider
the LVK method would give a negligible difference in fcut.

The IMRCT can be performed using any GR waveform model. The analyses considered
here use the IMRPhenomPv2 and IMRPhenomXPHM models.

2.4. Parameterised tests

The parameterized tests are designed to identify a GR violation by allowing deviations in
the frequency-domain phasing coefficients of GR waveform models. The frequency-domain
phase of the waveform in the early inspiral can be expressed analytically in a closed form
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using the stationary phase approximation as

Φ(f) =
3

128ηv5

7∑
k=0

(φkv
k + 3φklv

k ln v), (6)

where φk and φkl are coefficients in the post-Newtonian (PN) expansion, and this expression
extends to 3.5PN, the highest order known completely at the time the tests in question and
the GR waveform models they are based on were finalized. All of the φk in the sum are
nonzero, in general, except for φ1, while the φkl coefficients of the logarithmic terms are
only nonzero for k ∈ {5, 6} up to the PN order considered here. In the above expression,
η = m1m2/(m1 + m2)

2 denotes the symmetric mass ratio and v = (πMf)1/3, with
M = m1 +m2 being the binary’s total redshifted mass and f being the gravitational-wave
frequency. The PN expressions are not sufficient to describe the late-inspiral and merger-
ringdown stages of the signal, which are instead described in different ways in different
GR waveform models. For the IMRPhenomD model [25] relevant here, they are described
by analytical expressions using the phenomenological coefficients βk and αk that are fit to
numerical relativity simulations. If pk collectively denotes all of the inspiral and merger-
ringdown phasing coefficients φk, φkl, βk and αk, then deviations from GR at all stages can
be introduced by inserting the dimensionless fractional deformation parameters δp̂k into the
phase such that pk → (1 + δp̂k)pk. If the observed gravitational-wave signal is consistent
with GR and more specifically described by the GR waveform family used to perform the
analysis, all δp̂k should to be consistent with zero.

As mentioned earlier there are two varieties of the parametrized test. The first one is the
Test Infrastructure for General Relativity (TIGER) approach [11, 37] in which the deviations
are introduced only in the non-spinning part of the PN coefficients φk, φkl, as well as in the
phenomenological βk and αk coefficients. The restriction to modifying the non-spinning part
of the PN coefficients prevents situations where the spin terms cancel the nonspinning terms in
the PN coefficient, making the parameterisation singular. The LVK analyses so far have used
a TIGER version that introduces the deviations in the phase of aligned-spin dominant mode
waveform model IMRPhenomD [25] and its tidal extension IMRPhenomD NRTidal [29,
30]. This modified IMRPhenomD (IMRPhenomD NRTidal) phase is then twisted up
to produce a modified precessing IMRPhenomPv2 (IMRPhenomPv2 NRTidal) waveform
model using GR spin precession equations. The second variety is the Flexible-Theory-
Independent (FTI) method [12] that considers deviations in only the inspiral PN coefficients
(including the spin contributions) at low frequencies and tapers those deviations to zero
at a specific cutoff frequency, unlike TIGER that allows inspiral deviations to affect the
post-inspiral regime through the C1 matching used to construct the IMRPhenomD model.
The FTI test can be implemented based on any aligned-spin GR waveform model, but
the version used in the LVK analyses [3–6] is based on the effective-one-body reduced-
order model SEOBNRv4 ROM [38] and its higher-order mode version [39, 40] or tidal
version SEOBNRv4 ROM NRTidal [29, 30]. The FTI results are reweighted to the TIGER
convention, as in the LVK analyses [3–6], so that the results of the two analyses are directly
comparable.

2.5. Test of the modified dispersion relation

The modified dispersion relation (MDR) test of gravitational waves constrains dispersive
propagation of gravitational waves, specifically considering a phenomenological modification
of the standard dispersion relation. Gravitational waves in GR propagate non-dispersively as
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described by the standard dispersion relation E2 = p2, where E and p denote the energy and
momentum of the wave. The dispersion relation

E2 = p2 +Aαp
α (7)

introduced in [13] includes the leading predictions of a number of non-GR theories, as
discussed in that paper and [4]. Here Aα and α are phenomenological parameters, where Aα

determines how much the phase of the gravitational-wave signal deviates from the predictions
of GR and α determines the frequency dependence of the frequency-domain dephasing, which
is ∝ fα−1 (with a logarithmic expression for α = 1 in some implementations); see the explicit
expressions in [4, 13]. Here one assumes that the deviation from GR only comes from the
propagation of the waves and not from its generation, i.e. the signal close to the source is still
consistent with GR to a very good approximation, which is likely to be the case for at least
some of the alternative theories that predict modified propagation, notably massive graviton
theories, as discussed in [4].

In GR, Aα = 0 for all α, but in a beyond GR theory they can take nonzero values. For
example, in a massive graviton theory α = 0 and A0 > 0. The LVK analyses [3–6] consider
α ∈ {0, 0.5, 1, 1.5, 2.5, 3, 3.5, 4} (α = 2 is omitted since it corresponds to no dispersion of
the wave), and we consider these values or a subset here: The analyses of the GR and non-GR
waveforms from [7] just considers α = 0 and the analysis of numerical relativity waveforms
in [8] omits α = 1 §. As described in [4], the analysis is carried out by sampling over an
effective wavelength parameter, considering positive and negative values of Aα separately.
The results from two signs of Aα are then combined and reweighted to a flat prior in Aα to
obtain the final posterior on Aα for different values of α.

3. Meta IMR consistency test

The meta IMRCT is a straightforward extension of the standard IMRCT described in
section 2.3. Instead of using the final mass and spin inferred from the low- and high-frequency
portions of the analysis of a signal, one instead uses the final mass and spin inferred using two
different tests of GR, or a test of GR and the standard GR analysis of the signal (henceforth
referred to as GR parameter estimation [PE]). Specifically, one has

∆Mf

M̄f
= 2

MT
f −MT ′

f

MT
f +MT ′

f
, (8a)

∆χf

χ̄f
= 2

χT
f − χT ′

f

χT
f + χT ′

f
, (8b)

where T and T ′ are two separate analyses.
In this application, we break down each test of GR into its individual runs and apply the

meta IMRCT to these. Specifically, we consider the inspiral and merger-ringdown analyses
used in the standard IMRCT separately. Thus, the standard IMRCT is a special case of the
meta IMRCT, though we exclude the standard IMRCT from our meta IMRCT results and
just consider pairs of inspiral or merger-ringdown analyses with other tests or GR PE. For the

§ The analyses in [8] omit α = 1 since the implementation of the test they use gives the logarithmic frequency
dependence corresponding to using the particle velocity of the wave, while the group velocity that is physically
preferable gives a constant dephasing (which still leads to a non-GR signal in the presence of higher modes). We still
consider the α = 1 cases in the application of the meta IMRCT to real events, since it is still a fine phenomenological
test of GR in this case, even though it loses the motivation of coming from the dispersion relation.
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TIGER, FTI, and modified dispersion analyses, we consider pairs involving all the different
testing parameters separately, both with other testing parameters from the same test as well as
all other tests.

As mentioned previously, one expects the meta IMRCT to be sensitive to deviations
from GR (or more generally, from the waveform model used to perform the analysis), given
the results in [7], which show that the different tests (or GR PE) have different biases in the
final mass and spin when applied to non-GR signals (see specifically figures 10–12 in that
paper). This is as one would expect: When one performs a test of GR or GR PE on a signal
that is not described by the underlying GR waveform model used to perform the analysis, one
will obtain different posteriors on the individual masses and spins depending on the deviations
from GR allowed in the analysis. These differences in the individual masses and spins will,
in general, translate to different final masses and spins.

As is done for the standard IMRCT, we reweight the posterior on the deviation
parameters (∆Mf/M̄f ,∆χf/χ̄f ) to a flat prior by dividing by the distribution of the
deviation parameters induced by the prior distributions for the individual analyses. To have
a single number to measure the consistency of the meta IMRCT result with GR, we compute
the GR quantile QGR, which is the fraction of the reweighted posterior probability contained
within the isodensity contour that intersects the GR value of (0, 0), or

QGR =

∫
P (δM ,δχ)>P (0,0)

P (δM , δχ)dδMdδχ, (9)

where P is the reweighted posterior probability density and δM := ∆Mf/M̄f , δχ :=
∆χf/χ̄f . Thus, small GR quantiles correspond to agreement with GR, while GR quantiles
close to 100% correspond to significant GR deviations. We also sometimes quote the Gaussian
σ equivalent to the GR quantile, i.e. the number of σs away from the mean at which the
probability contained within a symmetric interval with edges that distance from the mean is
the same as the GR quantile, or symbolically, x, where

QGR =

∫ x

−x

N (x̄)dx̄, (10)

with N the standard normal distribution.
One subtle point in interpreting the results of the meta IMRCT is its dependence on two

prior probability distributions. (This also affects the standard IMRCT, but there it is customary
to choose the same prior distributions for both the inspiral and merger-ringdown analyses.) In
particular, if the priors on the masses and/or spins for the individual analyses are different, this
can lead to a prior on the IMRCT deviation parameters that peaks away from the GR value
of zero for one or both parameters. For instance, the prior on the deviation parameters peaks
well away from the origin for several pairs of GW190412 and GW190814 analyses, due to
different choices for the mass prior ranges, as discussed in the next section.

Finally, since one considers N(N − 1)/2 pairs when applying the meta IMRCT to N
tests of GR, one has to worry about the look elsewhere effect (see, e.g. [41]). We do not
attempt to correct for this effect here with a trials factor, but just note that we will find that
in the cases where the meta IMRCT recovers a GR deviation, it does so for a nonnegligible
fraction of the pairs considered, not just one or two.

4. Simulated observations

We consider two sets of simulated observations: GR and non-GR simulated observations
like GW150914 and GW170608 from [7] and quasicircular and eccentric simulated BBH
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observations (using numerical relativity simulations) from [8]. We use the results of parameter
estimation with GR waveforms (GR PE) and applications of the tests of GR described in
section 2 obtained in these previous papers. All of these cases do not include noise in the
simulated observations (i.e. consider the zero realization of the noise) to avoid biases from a
specific nonzero noise realization.

4.1. GW150914-like and GW170608-like GR and non-GR cases

We first detail the simulated observations from [7], which are designed to emulate the
GW150914 [42] and GW170608 [43] events, as fiducial high- and low-mass BBHs. These
use both GR and non-GR waveforms, considering both large and small deviations in
the GW150914-like case, and only small deviations in the GW170608-like case. The
GR waveforms considered are the IHES effective-one-body (EOB) model [44] and the
IMRPhenomD phenomenological model [25], and just include the dominant ℓ = |m| = 2
modes of the waveform. The IHES EOB model is used to obtain a non-GR waveform by
modifying its energy and angular momentum flux by multiplying the modes of the waveform
that first enter these at 2PN by a factor

√
a2. Thus, the inspiral phase is also modified starting

at 2PN. Additionally, the final mass and spin are set self-consistently to satisfy energy and
angular momentum balance, so the merger-ringdown portion of the signal also differs from
that in GR for the same initial masses (and spins). The IMRPhenomD model is the basis for a
waveform with dispersive propagation from a massive graviton [45] with graviton mass mg ,
leading to a dephasing of the entire waveform in the frequency domain ∝ m2

g/f (as in the
MDR test with α = 0, as discussed above). It is also the basis for waveforms with the TIGER
and FTI modifications described in section 2, here considering the modification to the 2PN
phasing coefficient.

The (redshifted) total masses of all these simulated observations are 72.2M⊙ and
19.9M⊙ for the GW150914-like and GW170608-like cases. The mass ratio is 1.22 for the
EOB waveforms and 1 for the others (due to a typo in generating the waveforms). The
IHES EOB model does not allow for spin, so the spins are set to zero in these simulated
observations (and both GW150914 and GW170608 are consistent with being nonspinning).
These simulated observations have SNRs of ∼ 54 (GW150914-like) and ∼ 21 (GW170608-
like) in the O3-like LIGO-Virgo sensitivities [46] considered, except for the modified EOB
GW150914-like case, where the SNR is as small as 40 (with the larger GR deviation).

The GR PE is carried out using the IMRPhenomPv2 waveform model, which also forms
the basis for all the tests applied, except for FTI, where we use SEOBNRv4 ROM as in most
applications to LIGO-Virgo data [4–6]. The applications of the TIGER and FTI tests to all
these cases just consider the 2PN deviation parameter, as well as the 1PN deviation parameter
in a few cases, and the δα2 and δβ2 post-inspiral parameters for TIGER. The MDR test just
considers the α = 0 case that agrees with the massive graviton dephasing.

The results use here include the corrected GW170608-like MDR simulated observations:
The published results used an GW170608-like MDR simulated observation with no massive
graviton dephasing, due to a typo in the command used to create it. An erratum for [7] is in
preparation.

4.2. Eccentric cases

We now detail the simulated observations from [8], which use numerical relativity simulations
of nonspinning BBHs from the Simulating eXtreme Spacetimes collaboration [47], both
quasicircular and with eccentricities of ∼ 0.05 and ∼ 0.1, at ∼ 17 Hz for the total mass of
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80M⊙ used for these cases (see [48] for information about the eccentric simulations, including
how the eccentricity is estimated). For each eccentricity, there are three mass ratios, q: 1, 2,
and 3. These simulated observations are created to be face-on, so only the m = 2 modes
contribute, and the ℓ modes considered are then matched to the test being carried out. Thus,
they are just the dominant ℓ = m = 2 modes for TIGER and FTI, where the analyses use
the IMRPhenomPv2 and SEOBNRv4HM ROM waveform models, respectively, but include
the ℓ = 3, m = 2 modes for MDR, which uses the IMRPhenomXPHM waveform model
(and IMRCT, which also uses IMRPhenomXPHM, but we do not use those results here,
as described below). The SNRs are ∼ 120, ∼ 105 and ∼ 90 for mass ratios of 1, 2 and
3, respectively, with the forecast O4 sensitivities [46] considered. We do not consider the
IMRCT results in these cases, due to the bias found in [8] for even the quasicircular cases,
which is attributable to the face-on inclination angle and the inclusion of higher modes.

5. Results

We now apply the meta IMRCT to the simulated observations discussed in the previous
section, using the results of the tests given in section 2 along with GR PE. Here we consider
the positive and negativeAα results from the MDR test separately. Additionally, as mentioned
above, we exclude the (I,MR) pair that just reproduces the standard IMRCT.

Table 1. Summary of meta IMRCT on GW150914-like simulated observations (simul. obs.).
Here > represents for larger GR deviation and < represents for smaller GR deviation. We
show the specific testing parameters or other PE results used. We apply the meta IMRCT to
all these pairs of results. The GR quantile and Gaussian σ columns give the median and 90%
interval for the distribution of these quantities for all the pairs of tests considered. The GR
quantile is two dimensional and 0 denotes agreement with GR. The quantity N100% denotes
the number of pairs where the GR quantile from the meta IMRCT and the maximum GR
quantile from the individual tests are both 100%. The quantities N

grtr,90%
mIMRCT and N

grtr
mIMRCT

denote the number of pairs where the meta IMRCT gives a larger GR quantile than the
individual tests do, where the first one also restricts to the pairs where the meta IMRCT GR
quantile is ≥ 90%. The quantity Ntot gives the total number of pairs.

Simul. Obs. GR PE IMRCT TIGER FTI MDR GR Quantile (%) Gaussian σ N100%/N grtr,90%
mIMRCT/N

grtr
mIMRCT/Ntot

EOB, GR ✓ I, MR δφ2, δφ4, δα2, δβ2 δφ2, δφ4 Ã0 2.8+63.1
−1.8 0.0+0.9

−0.0 0/0/12/54

Phenom, GR ✓ I, MR δφ2, δφ4, δα2, δβ2 δφ2, δφ4 Ã0 3.7+57.8
−3.1 0.0+0.8

−0.0 0/0/7/54

modified EOB, > ✓ I, MR δφ2, δφ4, δα2, δβ2 δφ2, δφ4 Ã0 99.6+0.4
−89.0 2.9+0.1

−2.8 25/2/2/54

modified EOB, < ✓ I, MR δφ4, δα2, δβ2 δφ4 Ã0 12.4+58.8
−10.6 0.2+0.9

−0.1 0/0/5/35

MDR, > ✓ I, MR δφ2, δφ4, δα2, δβ2 δφ2, δφ4 Ã0 71.5+27.0
−68.7 1.1+1.4

−1.0 0/1/1/54

MDR, < ✓ I, MR δφ4, δα2, δβ2 δφ4 Ã0 5.1+66.9
−3.8 0.1+1.0

−0.0 0/0/3/35

TIGER, > ✓ I, MR δφ4, δα2, δβ2 δφ4 Ã0 99.6+0.3
−98.4 3.0+0.1

−3.0 17/0/0/35

TIGER, < ✓ I, MR δφ4, δα2, δβ2 δφ4 Ã0 85.9+14.1
−84.4 1.5+1.5

−1.4 4/0/0/35

FTI, > ✓ I, MR δφ4, δα2, δβ2 δφ4 Ã0 100+0.0
−42.5 3.0+0.0

−2.1 30/0/0/35

FTI, < ✓ I, MR δφ4, δα2, δβ2 δφ4 Ã0 90.5+9.4
−89.0 1.7+1.3

−1.6 10/1/1/35
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5.1. GW150914-like cases

We summarize the meta IMRCT results for the GW150914-like GR and non-GR simulated
observations in table 1 as well as in figures 1 (GR and larger GR deviations) and 2 (smaller GR
deviations) ∥. This table (and similar ones later) has a format where the different simulated
observations are in separate rows, while the columns give the results of the different tests
used in the application of the meta IMRCT as well as summaries of the meta IMRCT results,
including various comparisons of the meta IMRCT GR quantiles with those of the individual
tests, discussed below.

The meta IMRCT indeed finds that the GR simulated observations are consistent with
GR, and recovers deviations from GR for many pairs for the larger GR deviations. In
particular, the median GR quantile is ≥ 99.6% for all the larger GR deviations except for
the MDR simulated observation (though there are some pairs with considerably smaller
GR quantiles for all simulated observations), while the median GR quantiles for the GR
simulated observations are < 4%. Indeed, the maximum GR quantiles for the GR simulated
observations are only 68% and 64%, respectively, for the EOB and Phenom versions, coming
from the (δφTIGER

2 , δα2) and (δφTIGER
2 , δβ2) pairs, respectively.

For a few of the simulated observations with larger GR deviations, the meta IMRCT gives
a GR quantile ≥ 90% and this GR quantile is larger than that from either of the individual tests
(this is the numberN grtr,90%

mIMRCT in the table) ¶. Here, to make this comparison, we have converted
the 1d GR quantiles Q1d for the individual tests to the equivalent of the 2d GR quantile, given
by |2Q1d −1| (so that 0 indicates agreement with GR). Moreover, we round (2d or equivalent)
GR quantiles above 99.7% to 100%. This lower bound arises because larger GR quantiles
cannot be stated with certainty from the ∼ 104 posterior samples we have, as discussed in [8].
We thus also quote in the tables (as N100%) the number of pairs for which the meta IMRCT
and at least one of the individual tests both give a GR quantile of 100%. For the modified
EOB simulated observation with the larger GR deviation, the pairs of (δφTIGER

2 , δα2) and
(δφTIGER

2 , δβ2) gave GR quantiles of 100% and 99.7%, respectively, which are greater than
the corresponding individual GR quantiles, which are 99.6%, 95.6% and 27.8% for δφTIGER

2 ,
δα2 and δβ2, respectively. We also find that there are 25 pairs (close to half of the total
of 54 pairs) where the meta IMRCT GR quantile and the larger of the two individual GR
quantiles both round to 100%. In such cases a significantly larger number of samples would
be necessary to determine whether the meta IMRCT identifies the GR deviation with higher
significance than the individual tests do.

For the MDR simulated observation with the larger GR deviation, the meta IMRCT only
gives a median GR quantile of 71.5%, but there is still one pair for which the meta IMRCT
gives a larger GR quantile than individual tests: (δφFTI

2 , I) gives a meta IMRCT GR quantile
of 91.6%, while the individual GR quantiles are 84.4% and 90.1% for δφFTI

2 and the standard
IMRCT, respectively. For the TIGER and FTI simulated observations with the larger GR
deviation, there are no cases where the meta IMRCT gives a larger GR quantile than the
individual tests do, though there are many cases where the meta IMRCT and at least one of
the individual tests both identify these very significant GR deviations with a GR quantile of
100%. Indeed, this is the case for 17 (49%) of the pairs for the TIGER simulated observation
and 30 (86%) of the pairs for the FTI simulated observation.

∥ The sign of the deviation parameters depends on the ordering of the pair. We choose the following ordering for
these plots and the similar ones below: GR PE, I, MR, δφTIGER

2 , δφTIGER
4 , δα2, δβ2, δφFTI

2 , δφFTI
4 , A<0

0 , A>0
0 ,

where not all of these are present for a given simulated observation.
¶ There are additional cases where the meta IMRCT gives a larger GR quantile than do the individual tests, but this
GR quantile is < 90%, and thus there is not a significant GR deviation identified. We thus give such results in the
tables with N

grtr
mIMRCT but do not comment on them in detail.
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For the GW150914-like cases with smaller GR deviations, the meta IMRCT does not
recover any significant deviation from GR in the modified EOB or massive graviton simulated
observations, giving maximum GR quantiles of 75.6%, though the largest GR quantile from
the individual tests in those cases is only 90.7%, for the MDR analysis of the modified EOB
simulated observation. However, the meta IMRCT recovers a slightly larger GR quantile than
the larger GR quantile for the individual tests for the (δβ2, δα2) pair and the FTI simulated
observation, where the pair gives a GR quantile of 97.81%, while the individual tests give
GR quantiles of 97.77% and 12.69%, respectively. There are also 10 pairs for which the meta
IMRCT GR quantile and the larger of the two individual GR quantiles both round to 100% for
the FTI simulated observation, as well as 4 such pairs for the TIGER simulated observation,
though there are no pairs for which the meta IMRCT gives a larger GR quantile.

5.2. GW170608-like cases

Table 2. The analogue of table 1 for the GW170608-like simulated observations.

Simul. Obs. GR PE IMRCT TIGER FTI MDR GR Quantile (%) Gaussian σ N100%/N grtr,90%
mIMRCT/N

grtr
mIMRCT/Ntot

EOB, GR ✓ × δφ4, δα2, δβ2 δφ4 Ã0 16+10.6
−15.4 0.2+0.1

−0.2 0/0/3/21

Phenom, GR ✓ × δφ4, δα2, δβ2 δφ4 Ã0 17.9+10.9
−17.2 0.2+0.1

−0.2 0/0/10/21

modified EOB ✓ × δφ4, δα2, δβ2 δφ4 Ã0 27.2+18.6
−26.1 0.3+0.3

−0.3 0/0/6/21

MDR ✓ × δφ4, δα2, δβ2 δφ4 Ã0 63.7+36.3
−62.8 0.9+2.1

−0.9 5/0/4/21

TIGER ✓ × δφ4, δα2, δβ2 δφ4 Ã0 72.4+17.3
−28.1 0.1+0.5

−0.5 0/0/3/21

FTI ✓ × δφ4, δα2, δβ2 δφ4 Ã0 55.7+24.6
−55.5 0.8+0.5

−0.8 0/0/6/21

The GW170608-like simulated observations are for GR signals and non-GR signals with
smaller GR deviations. We show the results for these simulated observations in table 2
and figure 3. The meta IMRCT finds that the GR signals are indeed consistent with GR,
with a largest GR quantile of 30.4% [for the (δφTIGER

4 , δα2) pair and the Phenom simulated
observation]. For the modified EOB simulated observation, none of the individual tests find a
significant GR deviation (largest GR quantile of 71.7% for the MDR analysis), and the meta
IMRCT finds even smaller GR quantiles [the largest is 49.4% for the (δφTIGER

4 , δα2) pair].
However, for the MDR simulated observation, the MDR test finds a significant GR deviation,
with a GR quantile of 100%, though the maximum GR quantile for the other analyses is
only 52.5% for δβ2. The meta IMRCT obtains GR quantiles of 100% for all pairs involving
A>0

0 (the sign of A0 given in the injection), except for (δφFTI
4 , A>0

0 ), where the GR quantile is
99.1%. The largest GR quantile for the pairs not involvingA>0

0 is 89.3% for the (GR PE, δα2)
pair; the δα2 GR quantile is 20.7%.

For the TIGER simulated observation, the δφTIGER
4 , δφFTI

4 and δβ2 analyses find GR
quantiles > 90%, though the meta IMRCT only gives a GR quantile > 90% for the
(δφTIGER

4 , δα2) pair, where the individual GR quantiles are 96.6% and 34.6%, respectively.
For the FTI simulated observation, the maximum GR quantile for the individual tests is 87.9%
for δφFTI

4 . The maximum GR quantile from the meta IMRCT is 87.0% for the (δφTIGER
4 , δα2)

pair, where the individual GR quantiles are 79.9% and 29.7%, respectively.
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Table 3. Summary of meta IMRCT applied on numerical relativity quasicircular and eccentric
simulated observations. Here q is the mass ratio and e is the eccentricity at ∼ 17 Hz. The
TIGER, FTI and MDR tests are performed with all deviation parameters. The other columns
have the same meanings as in table 1.

Simulation q e GR PE IMRCT TIGER FTI MDR GR Quantile (%) Gaussian σ N100%/N grtr,90%
mIMRCT/N

grtr
mIMRCT/Ntot

SXS:BBH:1155 1 0.0 ✓ × All All All 25.4+34.4
−14.5 0.3+0.5

−0.2 0/0/240/703

SXS:BBH:1355 1 0.05 ✓ × All All All 37.0+48.9
−32.5 0.5+1.0

−0.4 0/0/2/703

SXS:BBH:1357 1 0.10 ✓ × All All All 99.2+0.8
−86.7 2.6+0.4

−2.5 297/15/18/703

SXS:BBH:1222 2 0.0 ✓ × All All All 6.1+20.7
−2.6 0.1+0.3

−0.0 0/0/31/703

SXS:BBH:1364 2 0.05 ✓ × All All All 46.3+45.3
−41.7 0.6+1.1

−0.6 0/0/41/703

SXS:BBH:1368 2 0.10 ✓ × All All All 87.9+12.1
−77.6 1.6+1.4

−1.4 43/107/126/703

SXS:BBH:2265 3 0.0 ✓ × All All All 4.9+16.5
−2.6 0.1+0.2

−0.0 0/0/33/703

SXS:BBH:1371 3 0.06 ✓ × All All All 44.5+55.5
−42.2 0.6+2.4

−0.6 112/224/225/703

SXS:BBH:1373 3 0.09 ✓ × All All All 96.9+3.1
−88.2 2.2+0.8

−2.0 282/0/11/703

5.3. Quasicircular and eccentric numerical relativity waveforms

We show the results obtained by performing meta IMRCT on the TIGER, FTI, and MDR
test results applied on eccentric and quasicircular simulated signals from [8] in table 3 and
figures 4, 5 and 6 +. The meta IMRCT finds that all quasicircular cases are consistent with
GR at the 90% credible level, with largest GR quantiles of 86.4%, 40.3% and 37.4% for
q = 1, 2 and 3, respectively. This result is as expected since the tests use waveform models
that describe binaries on quasicircular orbits, though the significantly larger maximum and
median GR quantiles for the q = 1 simulated observation are unexpected: One expects that
the waveform models used are all quite accurate for nonspinning quasicircular binaries with
q ≤ 3, and the GR PE finds only the expected small biases from the true values for the
quasicircular simulated observations. The largest GR quantiles for q = 1 are for pairs with
A<0

0.5, and the 46 largest GR quantiles (with values ≥ 55.6%) are for pairs with either A<0
0.5

or A>0
0.5. Both the A0.5 analyses recover precessing binaries, and the posterior distributions of

final masses and spins extend to larger values than the distribution from GR PE, particularly
for theA<0

0.5 analysis. However, theA<0
0.5 analysis finds a notably smaller maximum likelihood

than GR PE or the A>0
0.5 analysis, so it may have been somewhat undersampled. This

shows how the meta IMRCT can identify possible problems with analyses. However, when
excluding the pairs with A≷0

0.5, one still obtains a median GR quantile of 22.6%, considerably
larger than the medians for the other quasicircular cases, though when excluding all the pairs
with MDR, one obtains a median and maximum GR quantile of 17.0% and 43.6%, and when
also excluding the pairs with FTI, 11.5% and 40.2%, showing that these are the analyses that
give the largest bias away from GR in the meta IMRCT.

+ The ordering of the pairs in these figures is the same as in the previous figures, except that since we now have the
full set of testing parameters, each set of testing parameters (i.e. the {δφk},{δαk}, {δβk} and {A≷0

α }) is ordered
by increasing values of its index. Explicitly, for the MDR parameters, we have A<0

0 , A>0
0 , A<0

0.5, A>0
0.5, . . .
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Also as expected, the median and maximum meta IMRCT GR quantiles increase with
eccentricity (the maxima are 99.5%, 95.4% and 100% for q = 1, 2 and 3 with the smaller
eccentricity and 100% for all three mass ratios with the larger eccentricity), with the median
value excluding GR at > 2σ Gaussian equivalent for the q = 1 and 3 larger eccentricity
simulated observations. The meta IMRCT also gives a GR quantile that is larger than
90% and larger than that from either of the individual tests for the q = 1 and 2 simulated
observations with the larger eccentricities, and the q = 3 simulated observation with the
smaller eccentricity. For the q = 1 simulated observation with the larger eccentricity, the
15 meta IMRCT GR quantiles in such cases range from 98.9% to 100% and all of the
pairs involve δφFTI

k , k ∈ {6, 7} paired with either GR PE or MDR. The largest difference
between the meta IMRCT GR quantile and the largest individual GR quantile in these cases
is 1.1 percentage points for the (δφFTI

7 , A<0
1.5) and (δφFTI

7 , A>0
2.5), both of which have a meta

IMRCT GR quantile of 100%; the δφFTI
7 , A<0

1.5 and A>0
2.5 GR quantiles are 98.8%, 24.4% and

93.1%, respectively. There are also 297 pairs (42% of the total) where the meta IMRCT gives
a GR quantile of 100% and at least one of the individual tests does, as well.

For the q = 2 simulated observation with the larger eccentricity, the 107 cases (15% of
the total) with meta IMRCT GR quantile > 90% and greater than the individual GR quantiles
are mostly FTI–MDR pairs, as well as some GR PE–FTA pairs and the δφTIGER

7 and δβ2
pairs with A>0

2.5. The largest meta IMRCT GR quantiles in this case are 100%, and they can
be significantly larger than the individual GR quantiles, in particular being greater by 42.6
percentage points in 9 cases with A>0

2.5 in the pair, including its pair with A<0
2.5. The largest

difference between the meta IMRCT GR quantile and the maximum individual GR quantile
is for the pair (GR PE, δφFTI

3 ), where meta IMRCT gives a GR quantile of 90.4% and δφFTI
3

gives a GR quantile of 4.8%.
For the q = 3 simulated observation with the larger eccentricity, there are 282 pairs

(40% of the total) with a meta IMRCT GR quantile of 100% (where at least one of the
individual tests does, as well) and 391 pairs (56% of the total) with a meta IMRCT GR quantile
> 90%, though there are no cases where the meta IMRCT gives a larger GR quantile than the
individual tests do. The pairs that give a GR quantile of 100% are mostly pairs of MDR with
another analysis, but also involve pairs of TIGER and FTI with GR PE, and TIGER and FTI
inspiral with δαk, as well as (δβ3, δα2).

However, for the q = 3 simulated observation with the smaller eccentricity, there are 224
cases (32% of the total) with meta IMRCT GR quantile> 90% and greater than the individual
GR quantiles. All of these have a meta IMRCT GR quantile of 100% and consist of pairs of
GR PE, TIGER, or FTI with MDR. The largest difference between the meta IMRCT GR
quantile and the largest individual GR quantile is 43.0 percentage points for the 6 pairs of GR
PE, δβ3 or δα4 with A≷0

3 ), where the meta IMRCT gives a GR quantile of 100%, while δβ3,
δα4 and A3 have GR quantiles of 17.9%, 20.1% and 57.0%, respectively. There are also 112
cases where the meta IMRCT and at least one of the individual tests both give a GR quantile
of 100%.

For the q = 1 simulated observation with the smaller eccentricity, the largest meta
IMRCT GR quantile is 99.5%, for the (δβ3, δα3) pair, where the individual GR quantiles
are 100% and 98.9%, respectively. For the q = 2 simulated observation with the smaller
eccentricity, the largest meta IMRCT GR quantile is 95.4%, for the (δφTIGER

1 , A>0
3 ) pair,

where the individual GR quantiles are 98.8% and 88.0%, respectively.
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Table 4. Summary of meta IMRCT on real events, similar to table 1.

Event GR PE IMRCT TIGER FTI MDR GR Quantile (%) Gaussian σ N100%/N grtr,90%
mIMRCT/N

grtr
mIMRCT/Ntot

GW170817 ✓ × All All × 4.2+14.3
−3.3 0.0+0.2

−0.0 0/0/0/210

GW190412 ✓ I, MR All All All 14.3+38.2
−10.9 0.2+0.5

−0.1 0/0/38/945

GW190521 ✓ × All × × 4.2+4.7
−1.2 0.0+0.0

−0.0 0/0/0/15

GW190814 ✓ × All All All 6.2+40.0
−5.8 0.1+0.5

−0.1 0/0/19/861

GW200225 060421 ✓ I, MR × All All 59.1+14.1
−52.0 0.8+0.3

−0.7 0/0/2/405

5.4. Real events

We now consider five real events: four exceptional events and one event that showed
problematic results in the LVK O3b testing GR analyses [6]. The exceptional events are
the likely binary neutron star GW170817 [14] (see also [49]); the unequal-mass binary
GW190412 [15]; the high-mass event GW190521 [16, 50]; and the very unequal-mass event
GW190814 [17], whose secondary is likely a light black hole, but could also be a heavy
neutron star or something more exotic. See also [51] for the LVK’s latest analyses of the
latter three signals. The problematic event is GW200225 060421 [1], which was an outlier in
the LVK MDR results and had the smallest p-value in the residuals test (0.05) of all the O3
events [6]. It also had a larger significance in the minimally modelled coherent WaveBurst
search [52] than in the templated searches that use GR compact binary waveforms [1].

We apply the meta IMRCT to these events using the LVC/LVK GR PE results and their
testing GR results for the tests we considered in previous sections (also including the −1PN
test, with testing parameter δφ−2, for both FTI and TIGER) from [3, 5, 6], using the data
from [53–55]. The waveform models employed for GR parameter estimation of these events is
carried out using IMRPhenomPv2 NRTidal (GW170817), IMRPhenomPv3HM (GW190412,
GW190521 and GW190814) and IMRPhenomXPHM (GW200225 060421). The tests we
consider are based on these waveforms except for FTI, which uses SEOBNRv4HM ROM, and
MDR, which uses IMRPhenomPv2 for GW190412, GW190521 and GW190814. The TIGER
and FTI tests for GW170817 use IMRPhenomPv2 NRTidal and SEOBNRv4 ROM NRTidal,
respectively. We show the meta IMRCT results in table 4 and figure 7, finding consistency
with GR, as in the LVK results for the non-problematic events ∗. Specifically, the maximum
GR quantile we obtain is 89.4 for the (δφFTI

−2, δα4) pair and GW190412; the specifics of the
maxima for each event are given in table 5. While the meta IMRCT does not find any GR
quantiles > 90% for the problematic event GW200225 060421, the median GR quantile of
59.1% is considerably larger than for the other real events or GR simulated observations.
We also found that the individual FTI GR quantiles for this event are > 90% for the 1.5PN
(δφ3) and higher testing parameters, indeed as large as 94.4% for the 2.5PN log (δφ5l) testing
parameter, though this is not remarked on in the LVK testing GR paper, which only presents
upper bounds for individual events.

Due to the specific mass priors used in the different tests for GW190412, GW190814 and
GW200225 060421, the priors on the deviation parameters peak well away from the GR value
∗ While GW170817 is likely a binary neutron star, and the tests of GR are applied using waveforms that include
tidal effects [30], in our application of the meta IMRCT we use the BBH final mass and spin fits, so we only consider
the consistency of the initial masses and spins, not the tidal deformabilities.
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Table 5. The details of the meta IMRCT pairs that give the largest GR quantile for the real
events.

Event Max. mIMRCT Pair Indiv. GR quantiles (%)GR Quantile (%)

GW170817 45.1 (δφTIGER
0 , δφTIGER

4 ) 81.1, 82.2

GW190412 89.4 (δφFTI
−2, δα4) 65.0, 0.5

GW190521 11.4 (δα2, δα4) 10.3, 49.5

GW190814 77.2 (δφTIGER
−2 , δβ3) 94.5, 78.1

GW200225 060421 79.0 (δφFTI
6 , A<0

1.5) 94.3, 95.9

for some pairs (distances of > 0.4 from the GR value). The cases that peak the furthest away
from the GR value are any of the pairs of GR PE, FTI or MDR with the IMR consistency
inspiral or merger-ringdown analyses for GW190412 and with TIGER for GW190814. In
all these cases, the peak of the posterior is around (∆Mf/M̄f ,∆χf/χ̄f ) = (1.3, 0), with
the ordering of the pairs we use, except for the GR PE pair, where it has the opposite sign.
Nevertheless, in all cases the posteriors still peak around the GR value. We find that for
GW190814 the significant shift of the prior away from the region preferred by the posterior
causes some artefacts when reweighting certain pairs to a flat prior in (∆Mf/M̄f ,∆χf/χ̄f ).
We are able to mitigate the artefacts by imposing a threshold on the probability density of
8×10−4 of the maximum, which only changes the GR quantiles of the pairs without artefacts
by less than 1.6 percentage points. The largest GR quantile difference are for pairs with FTI.
The largest difference for non-FTI pairs is 0.8 percentage points for the (δφTIGER

−2 , δβ2) pair.
For GW190412, we find that for all the aforementioned pairs where the prior peaks

well away from the GR value the reweighted posteriors are all centred around zero, with no
secondary peaks, while the unreweighted posteriors have a secondary peak around the peak of
the prior. However, for the pairs of the TIGER analyses with the merger-ringdown analysis,
where the prior peaks around (∆Mf/M̄f ,∆χf/χ̄f ) = (0.8, 0), the unreweighted posterior
still peaks at about the same location as for the FTI and merger-ringdown pairs, so one obtains
the secondary peaks in the reweighted posterior seen in figure 7.

6. Conclusions

Gravitational waves from coalescing compact binaries are now routinely used to test GR in
highly dynamical, non-linear gravity regions of space-time. There are now quite a few tests
that have been applied to inspect the consistency of the LVK observations with GR predictions
but no deviations from GR have been reported so far. In this paper, we proposed a new test
of GR, called the meta IMRCT, that checks the consistency between the results from two
different tests of GR analyses (or a GR analysis) on a given compact binary coalescence.
Specifically, the meta IMRCT checks the consistency of the inference of the final mass and
spin of the remnant black hole from two different tests of GR analyses or the standard GR
analysis of the signal.
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The meta IMRCT is a generalized version of the standard IMRCT (proposed in [9, 10])
that instead checks the consistency between the final mass and spin of the remnant estimated
from independently analyzing the low- and high-frequency portions of the signal. Unlike the
standard IMRCT, which is restricted to binaries whose masses are neither too low nor too
high, so that there is sufficient SNR in both the inspiral and merger-ringdown portions of the
signal (see, e.g. [6]), the meta IMRCT can be applied to BBHs of any total mass and SNR.
It can even be applied to binaries involving neutron stars. Here one can use the BBH final
mass and spin fits since these fits are just used to conveniently map the initial mass and spin
parameter space to a two-dimensional space. However, it would also be possible to use fits
for the final mass and spin of binary neutron star or neutron star–black hole binaries (e.g. the
ones in [56] and [57]; the latter are just for neutron star–black hole binaries, but are more
accurate, though the accuracy is not a great concern here, since these fits are just used to
provide a convenient, physically inspired dimensionality reduction). The meta IMRCT is
also computationally inexpensive to perform, without any additional stochastic sampling or
evaluation of waveforms, once one has obtained the individual test results.

To assess the performance of the meta IMRCT we applied it to a variety of simulated GR
and non-GR signals from quasicircular BBHs from [7] and numerical relativity GR signals
from quasicircular and eccentric BBHs from [8] (see section 4 for details). Specifically, we
utilize the tests of GR and standard GR parameter estimation analyses (all using quasicircular
waveform models) performed on these simulated signals in [7, 8] and compare the final mass
and spin estimates from these in pairs. The tests of GR that are performed in [7, 8] are
the two parameterized tests, TIGER and FTI, the modified dispersion relation test, and the
standard IMRCT (see section 2 for detail). We apply the meta IMRCT to all the different
testing parameters for TIGER, FTI, and the modified dispersion relation test and consider
the inspiral and merger-ringdown analyses of the standard IMRCT separately. (Of course,
the meta IMRCT reproduces the standard IMRCT results when applied to the inspiral and
merger-ringdown analyses.)

We found that the meta IMRCT indeed finds all simulated GR quasicircular signals
(Phenom, EOB, or numerical relativity) are consistent with GR, as expected since the
waveform models used in all the individual tests are quasicircular. The meta IMRCT reports
high GR quantiles (meaning large GR deviations) for signals with larger GR deviations,
larger than the individual tests’ GR quantiles in some cases. For simulations with smaller
GR deviation, the meta IMRCT does not report high GR quantiles, similar to the individual
test analyses. For numerical relativity eccentric simulations the meta IMRCT GR quantiles
increase with eccentricity, as expected, and give significantly large GR quantities (∼ 100%)
for larger eccentricity simulations. For one eccentric case, the meta IMRCT finds a GR
deviation for several pairs where the individual tests to which it is being applied do not find
a significant deviation, and finds a GR quantile > 90% and larger than the individual GR
quantiles for almost a third of the pairs, so this larger GR deviation would not be significantly
reduced by application of a trials factor.

We also applied the meta IMRCT to real compact binary signals GW170817,
GW190412, GW190521, GW190814 and GW200225 060421 using the results from the
LV(K) collaboration’s application of the tests of GR (we considered only TIGER, FTI, MDR
and IMRCT). The meta IMRCT finds all these events consistent with GR, giving GR quantiles
below 90%.

In the future, it will be interesting to explore applying the meta IMRCT using other
GR parameters (such as different combinations of the masses and spins or even extrinsic
parameters like distance or inclination angle), or larger numbers of parameters, to see what
gives the best performance. It will also be interesting to study the performance of the meta
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IMRCT on simulated binary neutron star and neutron star–black hole binaries, in particular
seeing whether including the tidal parameters improves the meta IMRCT.
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Figure 1. The results of meta IMRCT on the GW150914-like GR simulated observations
and those with the larger GR deviation presented as 2d contour plots of the posteriors on the
deviation parameters. The side panels shows the 1d histograms of the marginalized posteriors
of ∆Mf/M̄f and ∆χf/χ̄f. The gray contour delineates pairs of individual tests with color
gradient varying based on the value of GR quantile (where darker gray denotes larger GR
quantile and lighter gray denotes smaller GR quantile). We highlight in color the three cases
with the largest meta IMRCT GR quantile where this is larger than the GR quantile from either
of the tests of GR in the pair (or the single test of GR for pairs with GR PE) and also > 90%.
Specifically, we assign magenta color to the largest GR quantile, purple to the second-largest,
and blue to the third-largest.
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Figure 2. Similar to figure 1, but for the GW150914-like smaller GR deviation simulated
observations.
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Figure 3. Similar to figure 1 for the GW170608-like smaller GR deviation simulated
observations.
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Figure 4. The results of meta IMRCT on the numerical relativity quasicircular and eccentric
simulated observations with q = 1 presented as 2d contour plots of the posteriors on the
deviation parameters. These are plotted the same way as in figure 1.
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Figure 5. Similar to figure 4 for the q = 2 numerical relativity quasicircular and eccentric
simulated observations.



Meta IMR consistency test of GR 26

0.2 0.1 0.0 0.1 0.2

15

25

35

P(
M

f/M
f)

7 14 21
P( f/ f)

0.2

0.1

0.0

0.1

0.2

0.2 0.1 0.0 0.1 0.2
Mf/Mf

0.2

0.1

0.0

0.1

0.2

f/
f

e = 0.0, q = 3

0.4 0.2 0.0 0.2 0.4

4

24

44

P(
M

f/M
f)

4 14 24
P( f/ f)

0.4

0.2

0.0

0.2

0.4

0.4 0.2 0.0 0.2 0.4
Mf/Mf

0.4

0.2

0.0

0.2

0.4

f/
f

e = 0.06, q = 3
0.6 0.3 0.0 0.3 0.6

15

25

35
P(

M
f/M

f)

4 12 20
P( f/ f)

0.6

0.3

0.0

0.3

0.6

0.6 0.3 0.0 0.3 0.6
Mf/Mf

0.6

0.3

0.0

0.3

0.6

f/
f

e = 0.09, q = 3

Figure 6. Similar to figure 4 for the q = 3 numerical relativity quasicircular and eccentric
simulated observations.
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Figure 7. Result of meta IMRCT on real events presented as 2d contour plots and plotted in
the same way as in figure 1.
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