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Abstract—This paper considers data secrecy in distributed
storage systems (DSSs) using maximally recoverable locally
repairable codes (MR-LRCs). Conventional MR-LRCs are in
general not secure against eavesdroppers who can observe the
transmitted data during a global repair operation. This work
enables nonzero secrecy dimension of DSSs encoded by MR-
LRCs through a new repair framework. The key idea is to
associate each local group with a central processing unit (CPU),
which aggregates and transmits the contribution from the intact
nodes of their group to the CPU of a group needing a global
repair. The aggregation is enabled by so-called local polynomials
that can be generated independently in each group. Two different
schemes – direct repair and forwarded repair – are considered,
and their secrecy dimension using MR-LRCs is derived. Positive
secrecy dimension is enabled for several parameter regimes.

I. INTRODUCTION

Locally repairable codes (LRCs) are used in distributed

storage systems (DSSs) to protect data against loss due to

node failures [1]–[4]. A class of LRCs introduced in [5],

called maximally recoverable locally repairable codes (MR-

LRCs [6]–[11], also known as partial maximum-distance

separable (PMDS) codes [12]–[16]), can correct any erasure

pattern that is information-theoretically correctable for a spec-

ified level of redundancy. In a DSS encoded by an MR-LRC,

nodes are partitioned into local groups. Each group can repair

a certain number of node failures locally, while additional

failures can be also repaired by a so-called global repair. In

this work, we consider DSSs encoded by MR-LRCs of block

length N with g local groups, locality r, local distance δ and

h = N − gr global parities. This means that each group can

repair up to δ − 1 node failures by contacting r intact nodes

within the same group. The h global parities permit repair of

up to h additional failed nodes at arbitrary locations.

A desirable feature of DSSs is secrecy, i.e., the stored

information should be kept secret even if some nodes are mon-

itored by an eavesdropper. An LRC construction that maintains

secrecy in the presence of a so-called (l1, l2)-eavesdropper

was proposed in [17]. We assume a similar, though slightly

altered, eavesdropper model where the eavesdropper has read-

access to any l1 nodes and, in addition, can observe all data

traffic to—and the stored data within all nodes of—any l2
local groups. In a DSS storing k independent symbols and

having locality r, were an eavesdropper to observe any k
independent symbols, it would be able to reconstruct the whole

DSS, resulting in no secrecy. Thus, to construct a DSS with a

positive secrecy dimension, we assume throughout this paper

that l1 + l2r < k.

In this work, we study the secrecy of DSSs encoded with

MR-LRCs. Fig. 1 illustrates a DSS that is encoded with

an MR-LRC in the presence of an (l1, l2)-eavesdropper. We

define the secrecy dimension as the minimum number of

independent information symbols about which an (l1, l2)-
eavesdropper cannot gain any information. The secrecy dimen-

sion of an LRC-equipped DSS has been characterized in [17],

[18]. With the ability to globally repair failed nodes, DSSs

encoded by MR-LRCs gain higher reliability than DSSs with

LRCs. However, in the presence of an (l1, l2)-eavesdropper

with l2 > 0, the secrecy of the DSS comes under threat,

possibly leading to zero secrecy dimension, since the global

repair process enables the eavesdropper to obtain information

from other groups.

The main contributions of this work are two new global

repair schemes for DSSs encoded with MR-LRCs and the

characterization of the secrecy dimensions achieved by these

schemes. The main idea enabling a nonzero secrecy dimension

is the introduction of a central processing unit (CPU) for each

local group that serves as the interface for all communication

with other local groups during a global repair. When a global

repair is required, the CPU in each group having intact nodes

uses so-called local polynomials to generate a symbol that

is the contribution of that group to the global repair. The

respective CPU then sends the group’s contribution to the other

CPUs according to the particular information-sharing scheme.

The derived secrecy dimensions show that the DSSs, encoded

with MR-LRCs and equipped with a global or forwarding

global repair scheme, can achieve positive secrecy dimensions

in presence of an (l1, l2)-eavesdropper.

II. PRELIMINARIES

For integers a, b with a ≤ b, let [a, b] denote the set {a, a+
1, . . . , b− 1, b} and for b ≥ 1, let [b] denote the set [1, b]. The

set of positive integers is denoted as N and N0 := N∪{0}. Let

Fqm denote a finite extension field of degree m with base field

Fq , where q is a prime power. When the size is not relevant, we

simply write F and we let F∗ = F\{0}. The rank of a matrix

M with entries from F is denoted as rk(M). The Hadamard

(element-wise) product of two vectors u,v ∈ F
n is denoted

http://arxiv.org/abs/2405.06098v1
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Fig. 1. Illustration of a DSS with N = 15 nodes and storing k = 7
independent symbols. The DSS is encoded by an MR-LRC with g = 3
groups, locality r = 3, local distance δ = 3 (parities in light gray) and h = 2
global parities (in dark gray). The failed nodes marked with diamonds can
be repaired locally while the failed nodes marked with stars need data from
other groups to be repaired. The DSS is in presence of a (1, 1)-eavesdropper
who can read the data stored on one node (marked by a blue circle) and the
downloaded and stored data of any node in the top group (marked by a red
triangle).

as u ⊙ v. The entropy of a discrete random variable X ∈ X
is defined as H(X) = −

∑
a∈X :PX(a)>0 PX(a) log|X |PX(a).

Throughout this paper, two different node indexings are used.

The first is a DSS motivated indexing with group index i ∈
[g] and node index j ∈ [0, r + δ − 2], e.g., in Fig. 1, the

second node in the third group is denoted by x
(1)
3 . The second

indexing is only using one index µ ∈ [0, N − 1] and there is

a bijective mapping ϕ : N0 × N → N0 with (i, j) 7→ µ =
j+(r+ δ− 2)(i− 1). The inverse mapping ϕ−1 is written as

ϕ−1(µ) = (i(µ), j(µ)), where i(µ) = ⌈ µ
r+δ−2⌉ and j(µ) = µ

mod (r + δ − 2).

A. Linearized Reed–Solomon Codes

Let Fqm [x;σ] denote the ring of skew polynomials with

automorphism σ : Fqm → Fqm such that σ(a) = aq for

a ∈ Fqm . This ring is endowed with the usual polynomial

addition operation, but the multiplication, which is associative

and distributes over addition, is generally non-commutative,

being characterized by the property that xa = σ(a)x for

every a ∈ Fqm . For a vector b = (b0, . . . , bn−1) ∈ F
n
qm ,

let Vσ
n(b) ∈ F

n×n
qm be the σ-Vandermonde matrix as defined

in [19, Def. 2]. The set Ω = {b0, . . . , bn−1} ⊆ Fqm is a P-

independent set if, and only if, rk(Vσ
n(b)) = n [20, Lem. 12].

The following code family, which is based on σ-Vandermonde

matrices and generalizes Reed–Solomon and Gabidulin codes

[21], [22], was introduced in [23], [24].

Definition 1 (Linearized Reed–Solomon (LRS) Codes):

Let n = rg ≥ k and Fqm be such that 1 ≤ g ≤ q − 1
and r ≤ m hold. Choose a = (a1, a1, . . . , ag) ∈ F

g
qm such

that all elements ai are from different conjugacy classes of

Fqm . Let β =
(
β1,β2, . . . ,βg

)
∈ F

n
qm where the entries in

each βi ∈ F
r
qm , i ∈ [g] are Fq-linearly independent and let

b ∈ F
n
qm with bµ = ai(µ)(β

(j(µ))
i(µ) )q−1 for µ ∈ [0, n− 1]. An

(n, k) linearized Reed–Solomon code over Fqm on (b,β) with

respect to σ is given by

Cσ,k
LRS(b,β) := {f(b)⊙ β | f ∈ Fqm [x;σ], deg(f) < k}

with f(b) = (f(b0), . . . , f(bn−1)) ∈ F
n
qm .

B. Skew Lagrange Polynomials and Lagrange Basis

Lagrange-type skew polynomials can be constructed by

Newton interpolation for skew polynomials [25, Prop. 2.6].

Definition 2 (Skew Lagrange Polynomials): Let Ω =
{a0, a1, . . . , ak−1} ⊆ Fqm be a P-independent set. A skew

Lagrange polynomial ℓΩi ∈ Fqm [x;σ] fulfills the constraints

ℓΩi (ai) = 1 and ℓΩi (aj) = 0 for all i, j ∈ [0, k − 1], j 6= i.
Given a skew polynomial f ∈ Fqm [x;σ] of degree k − 1

evaluated on a P-independent set Ω, it can also be writ-

ten in a form with the Lagrange basis (ℓΩ0 , . . . , ℓ
Ω
k−1) ∈

(Fqm [x;σ])k , instead of the form with the monomial basis

(1, x, . . . , xk−1) ∈ (Fqm [x;σ])k . More details on the trans-

formation between the monomial and the Lagrange bases are

given in Appendix A.

C. Maximally Recoverable Locally Repairable Codes

Definition 3 (MR-LRC [5], [12]): An LRC C ⊆ F
n with g

groups and local distance δi for i ∈ [g] is said to be maximally

recoverable, i.e., MR-LRC, if after puncturing at most δi − 1
positions in each group, the punctured code is still MDS.

The MR-LRC construction used throughout this work is

taken from [7] and defined next for completeness. It uses LRS

codes and has been proven to be an MR-LRC in [7, Th. 2].

Construction 1 ([7, Constr. 1]): Let g be the number of local

groups with equal locality r and local distance δ. Choose Fqm

such that m ≥ r and q > max(g, r+ δ− 2). The construction

of the code has two steps:

1) Outer code: Choose an (n, k) LRS code Cout ⊆ F
n
qm for

n = rg.

2) Local codes: Choose any (r + δ − 1, r) MDS code

Cloc,i ⊆ F
r+δ−1
q which is linear over the local field Fq

for i ∈ [g].

The global code Cglob ⊆ F
N
qm with N = n + g(δ − 1) =

g(r + δ − 1) is then defined by

Cglob = {cout · diag(A1,A2, . . . ,Ag) | cout ∈ Cout},

with Ai ∈ F
r×(r+δ−1)
q being the generator matrix of Cloc,i for

i ∈ [g]. The number of global parities of this construction is

h = n− k = rg − k.

To be able to securely store data in DSSs encoded by MR-

LRCs in the presence of an (l1, l2)-eavesdropper, we use the

following construction, which is similar to the construction

from [17, Th. 33] based on Gabidulin codes.

Construction 2: Let ke be the number of independent sym-

bols that an (l1, l2)-eavesdropper observes in a DSS storing k
independent symbols and ks = k − ke. Assume ks > 0. The

construction has the following steps:

1) Given a file us = (u0, u1, . . . , uks−1) composed of ks
symbols in Fqm , generate r = (r0, r1, . . . , rke−1), where

the symbols ri are independent and uniformly distributed

over Fqm , for all i ∈ [0, ke−1]. Append r to us to obtain

u = (r,us) ∈ F
k
qm .

2) Encode u by the MR-LRC as in Construction 1.

As we will show in Section IV-A, with the two novel global

repair schemes introduced in Section III-B, this construction

has positive secrecy dimensions.



III. NOVEL GLOBAL REPAIR OF MR-LRCS

We first present a naive global repair scheme for MR-

LRCs and point out that its secrecy dimension is zero. We

then introduce a framework which allows for positive secrecy

dimension in a DSS encoded by an MR-LRC in the presence

of an (l1, l2)-eavesdropper.

A. The Naive Global Repair of MR-LRC

Consider a DSS encoded by Construction 2. In a naive

global repair, each failed node downloads as many symbols

from other nodes as needed for its own recovery. Note that

a global repair is needed only if more than δ − 1 nodes fail

in some group. In this case, the nodes in this group need to

download k−ν symbols from other groups to reconstruct their

data, where ν is the number of intact nodes in their group. It

follows from the definition of MR-LRCs that after puncturing

the δ− 1 failed nodes, the code is still an MDS code. Hence,

as long as the failed nodes gather any k symbols from the

intact nodes, they can reconstruct the whole data stored in the

DSS (see also [7, Sec.III]).

The drawback of such a naive global repair is that if an

(l1, l2)-eavesdropper with l2 > 0 were to observe the nodes

that require a global repair, it can also reconstruct the whole

DSS after observing the global repair, leading to zero secrecy

dimension.

B. Direct and Forwarded Global Repair

In our proposed global repair schemes, we assume that each

group has a central processing unit (CPU) which coordinates

the global repair process. If a global repair is needed in a

group, the CPU of this group sends a request to the other

CPUs. The CPU of each group, having sufficiently many intact

nodes, collects the symbols from its group needed for the

global repair and summarizes them into one symbol. This

symbol is then sent to the CPU of the group that needs the

global repair.

We introduce two schemes for the global repair process:

direct repair and forwarded repair, which only differ in the

manner in which each CPU sends its contribution to the CPU

of the group needing a global repair. In the direct global repair

scheme, the CPUs of the intact groups send their contribution

directly to the CPU of the group that needs a repair. In

the forwarded global repair scheme, each CPU of the intact

groups forwards its contribution to the next CPU according

to a forwarding list F . At each CPU, the new contribution

is the sum of its own contribution and, if applicable, the

received contribution from the previous CPU in the forwarding

list. Therefore, this scheme can be seen as an aggregate-and-

forward scheme. In the forwarded repair scheme, each group

receives at most one symbol. Hence, potentially increasing

the secrecy dimension compared to the direct repair. The two

schemes are illustrated in Fig. 2 with five groups and a global

repair required in the first group.

2 3 4 5

1

��⋆

(a) Direct global repair

2 3 4 5
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��⋆

(b) Forwarded global repair

Fig. 2. Illustration of two different global repair schemes where an erasure
(star) in the first group is repaired with global repair. Each circle depicts a
CPU of a group that coordinates a repair. The nodes in the groups are depicted
as the little squares. The forwarding list for (b) is F = {2, 3, 4, 5, 1}

C. Local Polynomials

We introduce in the following the key tool which enables

each CPU to send at most one symbol to the group where the

global repair is needed. This tool relies on the use of outer

LRS codes in Construction 1.

We define a minimal global repair set as a set ∆gl ⊆
{(i, j) | i ∈ [g], j ∈ [0, r + δ − 2])} of intact nodes storing

independent symbols and |∆gl| = k. For a fixed group s ∈ [g],
it holds that |∆gl∩{(s, j) | j ∈ [0, r+δ−2]}| ≤ r. In Fig. 1, we

have ∆gl = {(1, 1), (2, 0), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3)}.

Definition 4 (Local Polynomial): Let Cglob ⊆ F
N
qm and

Cout ⊆ F
n
qm be the global and outer code from Construction 1.

Fix a minimal global repair set ∆gl of nodes. For a codeword

c = (c
(0)
1 , c

(1)
1 , . . . , c

(r+δ−2)
g ) ∈ Cglob, the local polynomial

Li ∈ Fqm [x;σ] of the i-th group has the following properties:

• Li(b̃
(j)
i ) = c

(j)
i /β̃

(j)
i for all (i, j) ∈ ∆gl,

• Li(b̃
(t)
s ) = 0 for all s 6= i and (s, t) ∈ ∆gl,

where β̃
(j)
i are entries in β̃ = β diag(A1,A2, . . . ,Ag) and

b̃
(j)
i = ai(β̃

(j)
i )q−1.

Similar to the skew Lagrange polynomials, the local poly-

nomials can be generated by the Newton interpolation [25,

Prop. 2.6].

Theorem 1: We follow the notations in Definition 4. Let

f be an encoding polynomial of the outer code Cout =
Cσ,k
LRS(b,β). Let ∆gl,1 := {i | (i, j) ∈ ∆gl}. It holds that

f =
∑

i∈∆gl,1

Li. (1)

Proof: See Appendix B.

IV. SECRECY DIMENSION OF MR-LRCS

This section investigates the secrecy dimension of a DSS

encoded by Construction 2 with a direct or forwarded repair

scheme. The following lemmas are needed to show the secrecy

of Construction 2.

Lemma 1 (Secrecy Lemma [26]): Consider a DSS storing

u = (us, r) as in Construction 2. Let Us, R and E be the

random variables corresponding to us, r and the symbols

observed by an eavesdropper, respectively. If H(E) ≤ H(R)
and H(R | Us,E) = 0, then the eavesdropper cannot gain any

information about us, i.e., I(Us;E) = 0.

Lemma 2: Let K = (K0,K1, . . . ,Kk−1) be a vector

consisting of k ∈ N random variables. Consider a vector



X = (X0,X1, . . . ,Xm−1) consisting of m ∈ N random

variables such that X = MK
T, where M is of size m× k.

It holds that H(X) ≤ k. Furthermore, if the variables in K are

i.i.d., then H(X) = rk(M).
Proof: See Appendix B.

We now show that Construction 2 is information theoreti-

cally secure.

Theorem 2: Consider a DSS storing u = (us, r) as in

Construction 2. We have

I(Us;E) = 0,

where Us and E are the random variables corresponding to

the securely stored symbols and the observed symbols by the

eavesdropper, respectively.

Proof: We prove the statement via Lemma 1. The first

step is to show that H(E) ≤ H(R) is fulfilled. By Construc-

tion 2, we choose r consisting of ke random symbols. Thus,

the first condition holds.

The second step is to show that H(R | Us,E) = 0. The

eavesdropped symbols are e = Mc∆gl
, where the matrix

M ∈ F
(ke×k)
qm represents the ke independent symbols that an

eavesdropper has as constraints on the k encoded symbols as

in Construction 2. The basis is the outer codeword at the global

repair set without the column multipliers of the LRS code, i.e.,

c∆gl
:= (cout ⊙ β

−1)|∆gl
. The matrix M can be transformed

in the domain of the monomial coefficients of the encoding

skew polynomial f by Definition 5 yielding

eVσ
k (b)

−1 = MVσ
k (b)

−1

︸ ︷︷ ︸
=:Te

f ,

where f denotes the coefficients of the encoding skew poly-

nomial f and b are the code locators of the LRS code. The

matrix Te gives ke independent constraints on the polynomial

coefficients f , since M has rank ke and Vσ
k (b)

−1 has full rank.

Together with the ks coefficients of the information symbols,

with random vector representation Us, we have k = ke + ks
constraints on k coefficients of f . It remains to show that the k
constraints are independent. The ks coefficients can be written

in a matrix Ts such that us = Tsf . The stacked matrix T

consisting of Te and Ts can be used to determine H(Us,E)
by Lemma 2. The matrix Ts has ks nonzero entries which

are on the main diagonal. They contribute ks to the rank of

T. If the Vandermonde matrix Vσ
k (b)

−1 is punctured at the

corresponding ks columns, it still has rank k − ks due to its

structure. The overall rank of the punctured matrix T|ks is

therefore still k−ks = ke. Thus, the matrix T has rank k and

all coefficients of f , including the random symbols r, can be

determined given e and us, i.e., H(R | Us,E) = 0 holds.

Thus, for k − ke > 0, Construction 2 can guarantee a

positive secrecy dimension against an (l1, l2)-eavesdropper

that observes ke independent symbols.

A. Secrecy Dimension for Direct and Forwarded Global Re-

pair

The next step is to quantify the secrecy dimension of DSS

using MR-LRCs with a direct or forwarded global repair. It

can be calculated by

ks = H(K | E) = H(K)−H(E) = k − ke,

which follows from H(K,E) = H(K) = k due to E = f(K).
Thus, we quantify the secrecy dimension by calculating H(E).

1) Direct Global Repair: Before the secrecy dimension

with the direct global repair scheme in the presence of an

(l1, l2)-eavesdropper is calculated, some preliminary consid-

erations should be made. First, note that the eavesdropper

only gains knowledge during global repair if the global repair

is performed in a group that is observed in an l2-manner.

Direct global repair does not reveal any information to the

other groups which are only sending information. Second,

if l2 = 0, the secrecy dimension is ks = k − l1 since the

eavesdropper does not make any observations when global

repairs are performed. Therefore, we only consider l2 ≥ 1.

Third, the number of globally repairable erasures is bounded

from above by the number of global parities h = gr − k. If

more than h failed nodes need to be globally repaired, part of

the data cannot be recovered.

Theorem 3 (Secrecy Dimension with Direct Global Repair):

Consider a DSS encoded by Construction 2 with locality r,

g groups and h ≤ r global parities in the presence of an

(l1, l2)-eavesdropper with l2 ≥ 1 and l1+l2r < k. The secrecy

dimension of the DSS with a direct global repair is

ks,dir = k −

(
l2r + l1 − h+

g∑

i=1

min(h, r − ei)

)

︸ ︷︷ ︸
ke,dir

, (2)

where ei denotes the number of independent symbols that the

eavesdropper is observing in the i-th group from the l2r + l1
nodes, i.e., in the static case before the global repair process.

Proof:

The proof is given in Appendix C.

Remark: Note that for h ≥ r, the secrecy dimension will be

zero since ke,dir = k. This can be verified by assuming that

h = r, which means k = n− h = gr − r. Thus, it holds that

ke,dir = l2r + l1 − r +
∑g

i=1 min(r, r − ei), where we have

by definition of ei that ke,dir = (g − 1)r.

2) Forwarded Global Repair: Before the secrecy dimension

of a DSS with forwarded global repair is stated, we make

some preliminary considerations. First, note that global repairs

required by the groups observed in an l2-manner does not add

information to the eavesdropper, since the eavesdropper has

observed the data stored in these groups before the nodes

failed. Second, if two groups, that are observed in an l2-

manner, are next to each other in the forwarding list. The

second group will only receive a symbol that is already known

by the eavesdropper. Third, if the eavesdropper is at the

beginning of the forwarding list, it does not receive a symbol

and can thus not gain any knowledge during global repair.

These special cases drive us to derive the secrecy dimension

of a DSS with the forwarded global repair only for g ≥ 3. For

g ≤ 2, the secrecy dimension is only determined by the static

observations, i.e., ks = k − (l2r + l1).



Denote by F the forwarding list of the forwarded scheme

and by Fup,i the forwarding list containing the groups that are

upstream with respect to the i-th group. Let Gl2 be the set of

groups that are observed in an l2-manner. If a group in Fup,i

is observed in an l2-manner, let

F ′
up,i := Fup,i \





⋃

ν∈Fup,i∩Gl2

{j ∈ Fup,ν} ∪ {ν}




.

In words, given a group that is observed in an l2-manner,

F ′
up,i is the set of groups that are upstream in the forwarding

list Fup,i between the l2-observed group with index i and

the next l2-observed group (excluded) or until the end of the

list (included). For example, in Fig. 2b, assume the group 3

and 5 were observed in an l2-manner. Then the two lists are

Fup,5 = {2, 3, 4} and F ′
up,5 = {4}.

Theorem 4 (Secrecy Dimension with Forwarded Global

Repair): Consider a DSS encoded by Construction 2 with

locality r, g ≥ 3 groups and h ≤ r global parities in the

presence of an (l1, l2)-eavesdropper with l2 ≥ 1 and l1+l2r <
k.

The secrecy dimension of forwarded global repair is

ks,fw = k −



(l2r + l1) +
∑

i∈Gl2

min(h,
∑

j∈F ′
up,i

(r − ej))





︸ ︷︷ ︸
ke,fw

,

(3)

where ei denotes the number of independent symbols that the

eavesdropper is observing in the i-th group from the l2r + l1
nodes, i.e., in the static case before the global repair process.

Proof: The proof is given in Appendix C.

B. Comparison of Direct and Forwarded Global Repair

We give two examples in which we compare the secrecy

dimension of the introduced schemes.

Example 1: Consider the DSS depicted in Fig. 1 again. It

has g = 3 groups, locality r = 3, local distance δ = 3 and h =
2 global parities. The eavesdropper is a (1, 1)-eavesdropper.

The eavesdropped nodes and the failed nodes are depicted in

Fig. 3. With the directed global repair illustrated in Fig. 3a, we

can compute the secrecy dimension from (2) in Theorem 3:

ks,dir = k − ke,dir = 7 − 6 = 1. Namely, one information

symbol can be stored securely on the considered system with

the direct scheme. With the forwarded global repair illustrated

in Fig. 3b, from (3) in Theorem 4, we get that ks,fw = k −
ke,fw = 7− 6 = 1 information symbol can be stored securely

on the considered system with the forwarded scheme.

Example 2: We now compare the secrecy dimension of the

two global repair schemes for different number of groups g.

Consider a DSS with locality r = 7 and h = 3 global parities

in the presence of an (0, 1)-eavesdropper. The DSS stores k =
r · (g−1)+(r−h) = 7 · (g−1)+4 symbols. The comparison

is presented in Fig. 4, where the secrecy dimension of a DSS

encoded by a conventional LRC with h = 0 global parity is

also plotted. We can see that forwarded global repair has a

higher secrecy dimension than direct global repair for g > 3.
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Fig. 3. Illustration of the global repair schemes for the DSS from Fig. 1.
The failed nodes marked with stars need to be repaired globally. In (a) they
are repaired by direct global repair and in (b) forwarded global repair is used
with the forwarding list F = {2, 3, 1}. Both repairs are coordinated by the
CPUs of the groups, depicted by the circles on the left. The secrecy rates of
the DSS with respective repair schemes are given in Example 1.

1 3 5 7 9 11 13 15

0

20

40

60

80

100

number of groups g

se
cr

ec
y

d
im

en
si

o
n
k
s

direct global repair

forwarded global repair

LRC without global repair

Fig. 4. Plot of the secrecy dimension of a DSS that uses an MR-LRC
with forwarded global repair (blue) and direct global repair (red) for fixed
parameters l2 = 1, l1 = 0 r = 7, h = 3. The secrecy dimensions are the
same for g ≤ 3. For g > 3 forwarded global repair has a higher secrecy
dimension. In addition, the secrecy dimension of an LRC-coded DSS without
global repair, i.e., h = 0 is plotted.

The secrecy dimension of the forwarding global repair scheme

is only slightly below the secrecy dimension of a conventional

LRC.

However, forwarded global repair has the drawback of an

increasing latency in g, since each group, except the first group

in the forwarding list, is waiting for the upstream contribution

before sending its contribution.

V. CONCLUSION AND OUTLOOK

We have introduced a new repair framework for MR-LRCs

with LRS codes. In the framework, we associate a central pro-

cessing unit to each local group that uses local polynomials to

summarize the global repair contribution from the local group.

Two different global repair schemes are proposed and their

secrecy dimensions in the presence of a passive eavesdropper

are determined. For future research, it would be interesting to

investigate the secrecy dimension of MR-LRCs for arbitrary

repair graphs, i.e., global repair schemes that have an arbitrary

global repair topology consisting of forwarding (line) and

collecting (tree) structures [27]. Moreover, the general secrecy

capacity of DSS that use MR-LRCs could be investigated.
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APPENDIX A

MONOMIAL AND LAGRANGE BASIS OF SKEW

POLYNOMIALS

Definition 5 (Monomial and Lagrange Basis):

Let f = f0 + f1x + . . . + fk−1x
k−1 ∈ Fqm [x;σ] be a skew

polynomial in monomial basis with coefficient vector f =
(f0, f1, . . . , fk−1) ∈ F

k
qm . Let Ω = {a0, a1, . . . , ak−1} ⊆ Fqm

be a P-independent set and Φ = {p0, p1, . . . , pk−1} ⊆ Fqm

the set of evaluations of f such that f(ai) = pi for all

i ∈ [0, k − 1]. Denote p = (p0, p1, . . . , pk−1) ∈ F
k
qm . Let

L = {ℓ0, ℓ1, . . . , ℓk−1} be a Lagrange basis on Ω as defined in

Definition 2. A skew polynomial f can then be written as f =
p0ℓ0 + p1ℓ1 + . . .+ pk−1ℓk−1, i.e., it has two representations

f = f · m(x) = p · ℓ(x), where m(x) = (1, x, . . . , xk−1)T

and ℓ(x) = (ℓ0, ℓ1, . . . , ℓk−1)
T.

Lemma 3: The two representations from Definition 5 of a

skew polynomial f have the k× k skew Vandermonde matrix

Vσ
k (a) ∈ F

k×k
qm with a = (a0, a1, . . . , ak−1) ∈ F

k
qm as the

transformation matrix. It holds that fVσ
k (a) = p, and m(x) =

Vσ
k (a)ℓ(x).

The proof is by definition of the two basis and the skew

Vandermonde matrix and can be found in [28] for conventional

polynomials.

APPENDIX B

PROOF OF THEOREM 1

Proof: From [25, Prop. 2.9], we know that multiplying

the outer code Cout from the right with a block diagonal matrix

A ∈ F
n×t
q can also be realized by adjusting the elements of

β ∈ F
n
qm such that β̃ = β · A ∈ F

t
qm . We take at most

r global codeword symbols c
(j)
i from each group. Therefore,

the corresponding β̃
(j)
i are also Fq-linearly independent since

the generator matrices A ∈ F
r×(r+δ−1)
q are MDS. The sum

of local polynomials is equivalent to the encoding polynomial

if their evaluations at k points are the same. We can consider

f(b̃
(j)
i )β̃

(j)
i = c

(j)
i for all (i, j) ∈ ∆gl

at k positions. For a fixed (i, j) ∈ ∆gl, we have

f(b̃
(j)
i )β̃

(j)
i =

∑

m∈∆gl,1

Lm(b̃
(j)
i )β̃

(j)
i

= Li(b̃
(j)
i )β̃

(j)
i +

∑

m∈∆gl,1

m 6=i

Lm(b̃
(j)
i )β̃

(j)
i

(a)
= c

(j)
i + 0 = c

(j)
i ,

where (a) holds by Definition 4. Since ∆gl has cardinality k,

the sum of local polynomials is equal to f at k P-independent

points and thus (1) holds.

PROOF OF LEMMA 2

Proof: We know that

H(K,X) = H(X) + H(K | X)

by the chain rule of entropy and thus it holds that

H(X) ≤ H(K,X)

with equality if, and only if, X essentially determines K,

i.e., H(K | X) = 0.

Furthermore, it holds that X = f(K) = MK
T which yields

H(K,X) = H(K,MK
T) = H(K) ≤ k.

As a result,

H(X) = H(MK
T) ≤ H(K) ≤ k

holds. For the second part, we know that H(K) = k since

the random vector K consists of uniformly and independent

distributed random variables. The entropy of X is

H(X) = H(MK
T) ≤ k.

The rank of the matrix M determines how many symbols of

the random vector X are independent and this can be expressed

by H(X) = rk(M).

APPENDIX C

CALCULATION OF SECRECY DIMENSIONS

The following lemma is used to determine the secrecy

dimensions with a direct and forwarded global repair.

Lemma 4: Let f ∈ Fqm [x;σ] be a skew polynomial of

degree k − 1 in monomial basis with coefficient vector f =
(f0, f1, . . . , fk−1) ∈ F

k
qm . Let Ω = {a0, a1, . . . , an−1} ⊆ Fqm

be a P-independent set. Split the sets Ω into two subsets Ωk =
{ai | i ∈ [0, k − 1]} and Ωn−k = {ai | i ∈ [k, n − 1]}. Let

L = {ℓ0, ℓ1, . . . , ℓk−1} be a Lagrange basis on Ωk. The matrix

M =




ℓΩk

0 (ak) ℓΩk

1 (ak) · · · ℓΩk

k−1(ak)

ℓΩk

0 (ak+1) ℓΩk

1 (ak+1) · · · ℓΩk

k−1(ak+1)
...

...
. . .

...

ℓΩk

0 (an−1) ℓΩk

1 (an−1) · · · ℓΩk

k−1(an−1)




can be written as M =
(
Vσ

k (ak)
−1Vσ

k (ad)
)T

with ak =
(a0, . . . , ak−1) and ad = (ak, . . . , an−1). Moreover, M has

full rank, i.e., rk(M) = min(k, d).
Proof: It can be shown that the matrix M has full rank

by decomposing MT, which has the same rank as M, into

several matrices that are proven to have full rank. It holds that

MT = LVσ
k (ad)

with entries in L being the coefficient vectors of the Lagrange

skew polynomials ℓΩk

i , i ∈ [0, k − 1], i.e., Li,j = ℓΩk

i,j , where

ℓΩk

i,j is the j-th coefficient of the i-th polynomial ℓΩk

i . By

Lemma 3, we know that L = Vσ
k (ak)

−1 since it holds that

ℓ(x) = m(x)L. Overall, we have MT = Vσ
k (ak)

−1Vσ
k (ad).

Both matrices have full rank and it holds that rk(M) =
rk(MT) = min(k, d).
Remark: The above lemma also implies that submatrices of

M have full rank since they are also a product of two

Vandermonde matrices.



PROOF OF THEOREM 3

Before we give a general proof, the proof idea is il-

lustrated with an example. Consider the DSS as depicted

in Fig. 5. The global repair set for x
(0)
1 is ∆gl =

{(1, 1), (2, 0), (2, 1), (3, 0), (3, 1)}. The static observations of

the eavesdropper est before the global repair can be sum-

marized in a matrix Mst, where the basis is the outer

codeword at the global repair set without the column mul-

tipliers of the LRS code, i.e., c∆gl
:= (cout ⊙ β−1)|∆gl

=

(c
(j)
out,i(β

(j)
i )−1)(i,j)∈∆gl

. For the DSS in Fig. 5, we have

Mst =



ℓ
∆gl

1,1 (b
′) ℓ

∆gl

2,0 (b
′) ℓ

∆gl

2,1 (b
′) ℓ

∆gl

3,0 (b
′) ℓ

∆gl

3,1 (b
′)

1 0 0 0 0
0 1 0 0 0




with b′ = b
(0)
1 and est = Mstc∆gl

. The eavesdropper can also

observe the downloaded symbols to recover x
(0)
1 . They can be

summarized by edl = Mdlc∆gl
, where Mdl is

Mdl =



ℓ
∆gl

1,1 (b
′) 0 0 0 0

0 ℓ
∆gl

2,0 (b
′) ℓ

∆gl

2,1 (b
′) 0 0

0 0 0 ℓ
∆gl

3,0 (b
′) ℓ

∆gl

3,1 (b
′)


.

By Lemma 2, the knowledge of the eavesdropper can be

determined by calculating the rank of the stacked matrix M,

which consists of Mst and Mdl, i.e.,

M =




ℓ
∆gl

1,1 (b
′) ℓ

∆gl

2,0 (b
′) ℓ

∆gl

2,1 (b
′) ℓ

∆gl

3,0 (b
′) ℓ

∆gl

3,1 (b
′)

1 0 0 0 0
0 1 0 0 0

ℓ
∆gl

1,1 (b
′) 0 0 0 0

0 ℓ
∆gl

2,0 (b
′) ℓ

∆gl

2,1 (b
′) 0 0

0 0 0 ℓ
∆gl

3,0 (b
′) ℓ

∆gl

3,1 (b
′)




.

The first row of M is linearly dependent on the last three

rows. Thus, rk(M) = rk(M′) with

M′ =




1 0 0 0 0
0 1 0 0 0

ℓ
∆gl

1,1 (b
′) 0 0 0 0

0 ℓ
∆gl

2,0 (b
′) ℓ

∆gl

2,1 (b
′) 0 0

0 0 0 ℓ
∆gl

3,0 (b
′) ℓ

∆gl

3,1 (b
′)



.

With proper row operations on M′, we have rk(M′) =
rk(M′′), where

M′′ =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

0 0 0 ℓ
∆gl

2,1 (b
′) 0 0

0 0 0 0 ℓ
∆gl

3,0 (b
′) ℓ

∆gl

3,1 (b
′)



.

It can be readily seen that rk(M′′) = 2 + rk(M′′′), where

M′′′ =

(
ℓ
∆gl

2,1 (b
′) 0 0

0 ℓ
∆gl

3,0 (b
′) ℓ

∆gl

3,1 (b
′)

)
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Fig. 5. Illustration of a DSS with N = 9 nodes and storing k = 5 independent
symbols. The DSS is encoded by an MR-LRC with g = 3 groups, locality
r = 2, local distance δ = 2 (parities in light gray) and h = 1 global parities
(in dark gray). The DSS is observed by a (1, 1)-eavesdropper who can read
the downloaded and stored data of any node in the top group (marked by a
red triangle) and the data stored on one node (marked by a blue circle).

Overall, we have that ke = H(E) = rk(M) = 2 + rk(M′′′) =
2 + 2 = 4. Thus, the secrecy dimension of the DSS shown in

Fig. 5 is ks = k − ke = 5− 4 = 1.

We now turn to the proof of Theorem 3.

Proof: Denote by E1 (w.r.t. Est
2 ) the set of independent

nodes that are observed by an eavesdropper in an l1-(w.r.t. l2-)

manner in the static case without global repair, respectively.

Without loss of generality, assume that the first l2 groups are

observed by the eavesdropper in the l2-manner. Consider the

worst case, there are h failed nodes that need to be globally

repaired and they are, without loss of generality, in the first

l2 group at the first h positions with j ∈ [0, h − 1]. We

determine the entropy of the eavesdropped symbols H(E)
with Lemma 2. Assume that all possible local repairs are

performed such that only erasures in the first group are left.

By the definition of MR-LRCs (or PMDS codes), whenever

a global repair is required, |∆gl| = k. In the following, we

denote ∆gl = {(i1, j1), · · · , (ik, jk)}. Let the global repair set

∆gl overlap as much as possible with the static eavesdropper

observations E1 and Est
2 . The eavesdropped symbols e can be

represented by e = Mc∆gl
, where c∆gl

:= (cout⊙β−1)|∆gl
is

the outer codeword at the global repair set without the column

multipliers of the LRS code, and M =

(
Mst

Mdl

)
. The symbols

in est = Mstc∆gl
are the observed stored symbols of which

h are being repaired using the global repair set ∆gl, and the

matrix Mst ∈ F
(l2r+l1)×k
qm can be expressed as

Mst =




ℓ
∆gl

i1,j1
(b

(0)
1 ) · · · ℓ

∆gl

ik,jk
(b

(0)
1 )

...
. . .

...

ℓ
∆gl

i1,j1
(b

(h−1)
1 ) · · · ℓ

∆gl

ik,jk
(b

(h−1)
1 )

Ĩst




, (4)

where the columns indexed by (E1 ∪ Est
2 ) ∩ ∆gl of Ĩst form

an identity matrix. The symbols observed by the eavesdropper

during the global repair process are edl = Mdlc∆gl
, where



Mdl =




ℓ
∆gl

i1,j1
(b

(0)
1 ) . . . 0

...

0 . . . ℓ
∆gl

ik,jk
(b

(0)
1 )

...

ℓ
∆gl

i1,j1
(b

(h−1)
1 ) . . . 0

...

0 . . . ℓ
∆gl

ik,jk
(b

(h−1)
1 )














It can be seen that the first h rows of Mst are linearly

dependent on Mdl. Hence, rk(M) = rk(M′), where M′ =(
Ĩst
Mdl

)
and rk(M′) = rk(̃Ist) + rk(Mdl|∆gl\(E1∪Est

2 )).

Consider the matrix Mdl|∆gl\(E1∪Est
2 )) groupwise for the i-

th group. If the i-th group is fully punctured by the entries

of Ĩst, we have ei = r and there is no nonzero row in

Mdl|∆gl\(E1∪Est
2 ) corresponding to the i-th group. Otherwise,

there are still r− ei columns corresponding to the i-th group.

The rows corresponding to the i-th group are of the structure

investigated in Lemma 4. They can be represented by the

product of two Vandermonde matrices since they correspond

to evaluations of the same polynomial at P-independent points.

Therefore, the contribution of the i-th group is min(h, r−ei).
It holds that

rk(Mdl|∆gl\(E1∪Est
2 )) =

g∑

i=1

min(h, r − ei)

and we have

rk(M) = l2r + l1 − h+

g∑

i=1

min(h, r − ei),

which gives us H(E) by Lemma 2.

PROOF OF THEOREM 4

Proof: The proof is done in a similar manner as for

Theorem 3. We follow the notations for E1, Est
2 and ∆gl as

in the proof of Theorem 3. Let the l1-observations of the

eavesdropper be distributed in such a way that |E1∩∆gl| = l1.

Without loss of generality, assume that the global erasures

occur in the first group. Consider the worst case that the first

group is not observed by the eavesdropper in the l2-manner.

The eavesdropped symbols can be represented by e = Mc∆gl

where c∆gl
:= (cout ⊙ β−1)|∆gl

and M =

(
Mst

Mdl

)
∈

F
(l2r+l1+l2h)×k
qm . The matrix Mst ∈ F

(l2r+l1)×k
qm represents the

eavesdropper’s observation in the static case, i.e., before the

global repair, and Mst = Ĩst, where the columns indexed by

(E1 ∪ Est
2 ) ∩ ∆gl of Ĩst form an identity matrix. Hence, it

contributes l2r + l1 to the rank of M. The other part of M,

namely Mdl ∈ F
l2h×k
qm summarizes the global repair symbols

that are observed by the eavesdropper,

Mdl =




∑
ν∈Fup,Gl2

(1)
ℓ∆gl
ν (b

(0)
1 )

...∑
ν∈Fup,Gl2

(l2)
ℓ∆gl
ν (b

(h−1)
1 )


 ,

where ℓ∆gl
ν (b) = (ℓ

∆gl

ν;i1,j1
(b), . . . , ℓ

∆gl

ν;ik,jk
(b)) with ℓ

∆gl

ν;i,j(b) =

ℓ
∆gl

i,j (b) for ν = i and ℓ
∆gl

ν;i,j(b) = 0 otherwise, for all (i, j) ∈
∆gl. For each repair and each group observed in an l2-manner,

one symbol, as the sum of all upstream symbols, is observed.

Therefore, there are l2h rows in Mdl. The matrix Mdl can

be reduced by Gaussian elimination to a matrix M′
dl with

k−(l2r+l1) nonzero columns by subtracting the rows of Mst.

Moreover, the matrix M′
dl can be further reduced to matrix

M′′
dl such that only the columns corresponding to groups in

F ′
up,i are nonzero. The submatrices of M′′ for each l2-manner

observed group (only consider the nonzero columns) have a

structure as described in Lemma 4 and they are of size h ×
(
∑

j∈F ′
up,i

(r − ej)) with full rank. Thus, the rank of matrix

M is

rk(M) = rk

(
Ĩst
M′′

dl

)

=



(l2r + l1) +
∑

i∈Gl2

min(h,
∑

j∈F ′
up,i

(r − ej))



 ,

which gives us H(E) by Lemma 2.
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