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Abstract

The expression for the higher temperature dependence of the mean squared displacement in pro-

teins is obtained. The quantum multi-well model explains the dynamic transitions of the proteins

and minimizes the amount of parameters to a single one leading to the few-state harmonic system

at low-temperatures, and, thus, justifying the possibility of using proteins as atom traps to control

qubits at a bit higher temperatures.
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I. INTRODUCTION

In recent years, the study of protein dynamics has become an integral part of understand-

ing biological processes at the molecular level. Proteins, being the workhorses of the cell,

undergo a multitude of conformational changes that are crucial for their function. These

dynamical behaviors of proteins are not merely incidental but are fundamental to their roles,

from catalysis to structural support in the cellular matrix. Among various techniques em-

ployed to probe the dynamical properties of proteins, neutron scattering has emerged as a

powerful tool, offering insights into the atomic and molecular motions within these complex

macromolecules[1, 2].

Elastic Neutron Scattering (ENS) techniques, in particular, have been extensively uti-

lized to investigate the Mean Square Displacement (MSD) of atoms in proteins, shedding

light on their temperature-dependent dynamical behaviors. Benedetto (2011) showcased

the application of ENS in studying the dynamical transition in lysozyme, highlighting the

significant effect of hydration on the protein’s dynamical properties and positing a relation-

ship between the protein dynamical transition and the fragile-to-strong dynamical crossover

(FSC)[1]. This study laid the groundwork for understanding the intricate relationship be-

tween protein dynamics, hydration, and temperature.

Building upon these foundational insights, Gabel et al. (2002) provided a comprehensive

review of neutron scattering studies on protein dynamics, emphasizing the strong depen-

dence of internal dynamics on the macromolecular environment. Their work underscored

the versatility of neutron scattering in capturing the nuances of protein motions and their

implications for biological function[2].

The intricate interplay between protein folding and dynamics was further elucidated by

Nakagawa, Kamikubo, and Kataoka (2010), who investigated the effect of conformational

states on the dynamical transition using incoherent elastic neutron scattering. Their findings

revealed significant differences in the dynamical properties between wild-type proteins and

mutants, suggesting that protein folding induces changes in dynamical behavior, a pivotal

insight into the molecular basis of protein functionality[3].

Moreover, the studies by Nickels (2013) and Hirata (2018) explored the methodological

aspects of neutron scattering in studying protein dynamics. Nickels (2013) focused on the im-

pact of instrumental energy resolution on the analysis of MSD, while Hirata (2018) proposed

4



a theoretical framework for interpreting the temperature dependence of MSD, shedding light

on the physical underpinnings of the dynamical transition observed in proteins[4, 5].

Collectively, these studies underscore the significance of neutron scattering techniques

in unraveling the complex dynamics of proteins. By providing a detailed picture of how

proteins move and respond to environmental changes, neutron scattering contributes to our

understanding of the fundamental principles governing protein function. This body of work

serves as a critical foundation for the current investigation, which aims to delve deeper into

the dynamical transitions of proteins and their application.

In parallel, the advent of quantum computing has heralded a new era in the computational

sciences, promising significant advancements in processing power and efficiency through the

principles of quantum mechanics. Central to the development of quantum computers is the

ability to control quantum states with high precision. Traditionally, this control has been

achieved through the manipulation of atoms or ions in traps at ultracold temperatures,

leveraging the quantum mechanical properties of these systems for computation. The liter-

ature is rich with studies demonstrating the efficacy of atom traps in quantum computing

applications, highlighting advancements in laser cooling and trapping techniques, scaling of

trapped ions, and optical trapping of Rydberg atoms among others[6, 10, 11].

One of the foundational pieces of research by Ashkin and Gordon (1979) explored the po-

tential of optical trapping and cooling of neutral atoms using resonance radiation pressure,

setting the stage for subsequent developments in the field[6]. Miroshnychenko et al. (2006)

further advanced this domain by demonstrating the precision manipulation of trapped atoms,

a critical requirement for quantum information processing[7]. The scalability of these sys-

tems, as discussed by Monroe and Kim (2013), remains a significant challenge, yet advance-

ments in microfabricated ion traps and integrated photonics offer promising solutions[10].

Moreover, the application of blue-detuned optical traps proposed by Zhang, Robicheaux,

and Saffman (2011) illustrates the versatility of trapping technologies in addressing the

needs of quantum computing, particularly in achieving magic-wavelength conditions for var-

ious atomic states[11]. Similarly, the innovative approach of using ferromagnetic nanowire

domain walls as atom traps, as demonstrated by Allwood et al. (2006), underscores the po-

tential for integrating quantum computing elements within semiconductor architectures[12].

However, a pervasive challenge in quantum computing remains the necessity of operating

at ultracold temperatures to maintain coherence and minimize decoherence effects. This
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requirement imposes significant limitations on the practicality and scalability of quantum

computing systems. It is within this context that the exploration of proteins as atom traps

for controlling quantum states at higher temperatures emerges as a groundbreaking concept.

Proteins, with their complex three-dimensional structures and functional versatility, offer a

unique platform for quantum state manipulation. By leveraging the intrinsic properties of

proteins, such as their ability to bind and interact with metal ions and small molecules, it is

conceivable to create bio-inspired quantum computing architectures that operate at higher

temperatures than currently possible with traditional atom traps.

This concept draws upon the extensive body of research on protein dynamics and their

interactions with ligands and ions. For instance, the study of protein dynamics by neutron

scattering techniques has provided valuable insights into the atomic and molecular motions

within proteins, which could inform the design of protein-based quantum traps. Addition-

ally, the manipulation and controlled assembly of atoms by optical tweezers, as explored by

Miroshnychenko et al. (2006), could find analogous strategies in the biochemical manipula-

tion of proteins and their bound atoms or molecules[8, 9].

In proposing proteins as a novel platform for quantum computing, this paper seeks to

bridge the gap between the physical sciences and biochemistry, opening new avenues for

research in quantum information processing. By harnessing the natural properties of proteins

and integrating them with existing quantum computing technologies, we aim to overcome

the limitations imposed by ultracold temperatures and pave the way for more accessible and

scalable quantum computing solutions. The potential for proteins to act as atom traps and

control quantum states at higher temperatures not only represents a significant leap in the

field but also underscores the interdisciplinary nature of future advancements in quantum

computing.

II. THE PHENOMENON

We aim to explain the behavior on Figures 1,2,3 (the plot of the MSD dependence of

hydrogen atom w.r.t temperature) namely the zones:

Regarding FIG. 1:

1. ≈ 0− 50K The temperature-independent region proposed by W. Doster [14]
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FIG. 1. Green Fluorescent Protein: MSD(T) dependence [13]

2. ≈ 50− 190K Almost linear dependence (similar to Brownian Motion)

3. ≈ 190− 280(?)K Directed motion

4. Confined motion (Figure 3, when an resolution of the instrument is high enough to

observe saturation)

FIG. 2. Glutamate Dehydrogenase: MSD(T) dependence with possible saturation, [16]
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FIG. 3. Cholinesterase MSD(T) dependence with probable saturation, [15]

III. THE PROBABLE POTENTIAL FOR THE HYDROGEN ATOM

A. Two Types of Potential Wells

Thousands of molecules surround the hydrogen atom in the hydrated proteins, thus, the

effective potential well of such surroundings could have a too complicated shape to calculate

MSD. Therefore as the first and rough approximation, we might look at such potential wells

in a very general way. We might state that there are two general shapes:

1. Square well, that could be used to tightly fill all the space as a sequence of square

blocks.

2. Non-square well.

FIG. 4. Square Well
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FIG. 5. Non-square Well

B. Approximation

1. Potential

Then to start with, we may choose the simplest representatives of the two above:

1. Infinite square well

2. Harmonic oscillator

FIG. 6. Two types of potentials

The harmonic oscillator already describes very well the zero-point fluctuations in the

MSD of proteins, but

• the harmonic oscillator does not describe the desired phase transition

• the harmonic oscillator is infinitely spread in space while the protein has a finite size,

thus, one might try to limit the harmonic oscillator with the infinite square well, which

also corresponds to the ”narrow” harmonic oscillator:

But this limitation will not lead to the phase transition of the protein on the Fig 3:

We will try to fit the results with two limited oscillators on the Fig 8. The reason for this

amount is specified in Chapter VI in Section 16.
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FIG. 7. The oscillator limited with infinite square well

FIG. 8. Two oscillators limited with infinite square well

2. Phase Transition

The phase transition 2-3 in Chapter II according to the model on Fig 8 could be explained

by the collective transitions of the hydrogens in the ”harmonic” zone. Since in the Einstein

model, all the oscillators are independent and have the same frequency ω they might change

the energy level at the same condition when the temperature is

kT ∗ = h̄ω (1)

After this jump to the higher energy level, the hydrogen atom might have more space

to move (because of jumping above the barrier or tunneling) and, thus, a bigger mean

square displacement in the phase transition 2-3. Thus, after this jump, the influence of the

interaction between wells takes place.

The next jump at the temperature kT ∗∗ = 2h̄ω will increase the contribution of the infinite

10



square well leading to the confined motion and saturation of the mean square displacement

due to the finite size of the model.

We will first consider the two limiting cases separately: the infinite square well (high

energies of the hydrogen) and the harmonic oscillator (low energies of the hydrogen) and

then we will go to the direct calculation of the numerical values.

IV. INFINITE SQUARE WELL

FIG. 9. Infinite square well

Let

t∗∗ ≡ πh̄2

8kmL2
· 1

T ∗∗ (2)

Where k is the Boltzmann constant, L is a half-width of the infinite square well and m is a

masss of the hydrogen.

⟨∆x2⟩ = L2

3
− 2L2

π2
π ·

2
√
t∗∗ − 2

√
t+ t− t∗∗ + 1

π

∑∞
n=1

1
n2 exp(−πt∗∗n2)

1√
t
− 1

(3)

V. HARMONIC OSCILLATOR

The Einstein solid is a model of a crystalline solid that contains a large number of

independent three-dimensional quantum harmonic oscillators of the same frequency ω.

⟨∆x2⟩ = h̄

2mω
coth

(
h̄ω

2kT

)
(4)
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VI. CALCULATION OF NUMERICAL VALUES

A. Plan

1. Knowing the temperature T ∗ of the phase transition 2-3 from the experimental data

on the Fig 1, we can define the frequency of the zero-point fluctuations ω (h̄ω = kT ∗

according to the 1) ⇐⇒ knowing the fitting (value) the of ⟨∆x2⟩
∣∣
T=0

, we can estimate

the frequency ω according to the A17
(

h̄
2mω

= ⟨∆x2⟩
∣∣
T=0

)
and then the temperatures

of the phase transitions T ∗, T ∗∗ (kT ∗ = h̄ω, kT ∗∗ = 2h̄ω).

2. Then knowing the temperature T ∗∗ and the mean square displacement at this temper-

ature according to A10, we can estimate the width of the square well L.

B. Parameters

Thus, to do the calculation we have to know T ∗ or ⟨∆x2⟩
∣∣
T=0

.

C. Glutamate Dehydrogenase

FIG. 10. Glutamate Dehydrogenase: MSD(T) dependence with possible saturation, [16]

1. Harmonic oscillator zone

From the Fig. 10 (IN16 data) [16] we can notice the first saturation ordinate at:

T ∗∗ ≈ 210K; then T ∗ =
T ∗∗

2
= 105K; (5)

12



And, thus:

ω =
kT ∗

h̄
≈ 1.38 · 10−23J ·K−1 · 105K

1.054 · 10−34J · s
≈ 137.48 · 1011s−1 (6)

⟨x2⟩
∣∣
T=0

=
h̄

2mω
=

1.054 · 10−34J · s
2 · 1.67 · 10−27kg · 137.48 · 1011s−1

≈ 0.0023 · 10−18m2 = 0.0023 nm2 = 0.23Å2 (7)

That corresponds to the order of the experimental data

2. Infinite square well zone

Frome the A8:

t∗∗ =
πh̄2

8km

1

T ∗∗
1

L2
=

3.14 · (1.054 · 10−34J · s)2

8 · 1.38 · 10−23J ·K−1 · 1.67 · 10−27kg
· 1

210K
· 1

L2

≈ 0.0009 · 10−18 J · s2

kg
· 1

L2
(8)

But L2 > ⟨x2⟩
∣∣
T=T ∗∗ , because L is the infinite square well width, thus at least L ≥ 0.94Å

(according to the data on the Fig. 10 and the fact that L should be greater than the

hydrogen atom radius):

t∗∗ = 0.0009 · 10−18 J · s2

kg
· 1

L2
≤

≤ 0.0009 · 10−18 J · s2

kg
· 1

0.9 · 10−20 m2
= 0.1 (9)

Thus, according to the A12:
1
π

∑∞
n=1

1
n2 exp(−πt∗∗n2) < 1

π

∑∞
n=1

1
n2 = π

6

1
π

∑∞
n=1

1
n2 exp(−πt∗∗n2) > 1

π
exp(−πt∗∗) ≈ 0.23

(10)

As a result the estimation:
1

π

∞∑
n=1

1

n2
exp
(
−πt∗∗n2

)
≈ 1

2
(11)

After substituting into the A10:

13



FIG. 11. 1
π

∑∞
n=1

1
n2 exp

(
−πt∗∗n2

)
w.r.t. t∗∗

⟨∆x2⟩ = L2

3
− 2L2

π2
π ·

2
√
t∗∗ − 2

√
t+ t− t∗∗ + 1

π

∑∞
n=1

1
n2 exp(−πt∗∗n2)

1√
t
− 1

=

L2

3
− 2L2

π2
π ·

2
√
t∗∗ − 2

√
t+ t− t∗∗ + 1

2
1√
t
− 1

(12)

At t = t∗∗:

⟨x2⟩
∣∣
T ∗∗=210K

= 0.9Å2 =
L2

3
− L2

π
· 1

1√
t∗∗

− 1
⇐⇒ L ≈ 1.175Å (13)

And the width of the infinite square well 2L = 2.350Å.

3. Harmonic Oscillator - Infinite Square Well contact

FIG. 12. The more oscillators − the less their independence and the less amount of harmonic levels

contributes to the mean square displacement

We will check how many energy levels of the harmonic oscillator are reachable before the
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infinite square well zone in case of two harmonic oscillators:

Wp =
mω2x2

2
(14)

Wp

∣∣
x=−L

= Wp

∣∣
x=L

=
1.67 · 10−27kg · (137.48 · 1011s−1)2(1.175Å)2

2

= 0.218 · 10−20J (15)

n =

[
Wp

∣∣
x=−L

h̄ω
− 1

2

]
=

[
Wp

∣∣
x=−L

h̄ω
− 1

2

]
=[

0.218 · 10−20J

1.055 · 10−34J · s · 137.48 · 1011s−1
− 1

2

]
= 1 (16)

Thus, we have 2 energy levels in the harmonic zone (including zero-point energy). Therefore

it is better to use two harmonic oscillator wells rather than a greater amount of wells to

treat the independence effect in Einstein approximation.

VII. CONCLUSION

The discovery of two harmonic zones within Glutamate Dehydrogenase presents an in-

triguing possibility for controlling the transitions between these zones, thereby allowing for

the encoding of information. While the research to date has illuminated some aspects of

these transitions, the exact temperature dependence at temperatures exceeding T ∗ remains

undetermined.

This research underscores the value of enhanced resolution in neutron scattering instru-

ments, when instruments can accurately observe the saturation point of the mean squared

displacement (MSD), and it is possible to ascertain the total number of harmonic zones

accessible to the hydrogen atom within the protein structure.

Considering the temperature constraints inherent to qubit operation, due to entanglement

phenomena at elevated temperatures, the harmonic wells of Glutamate Dehydrogenase at

or near the temperature T ∗ offer a promising avenue for qubit representation. The states of

the hydrogen atom in these wells are particularly significant, as they contribute markedly to

the protein’s mean squared displacement under these conditions. This relationship between

the protein’s thermal state and the behavior of hydrogen atoms within its harmonic zones
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not only deepens our comprehension of protein dynamics but also opens up novel pathways

for the utilization of protein states in quantum computing. The ability to leverage these

harmonic zones for information storage and manipulation could herald a new era of bio-

inspired quantum computing devices, where biological molecules and quantum computing

mechanisms converge.

VIII. PROSPECTS

One of the pivotal goals for forthcoming research could be the identification and analysis

of other proteins exhibiting discernible saturation points in their mean square displacement

(MSD) profiles when analyzed through neutron scattering techniques.

Given the instrumental resolution effects on neutron scattering studies of protein dynam-

ics as detailed by J.D. Nickels (2013) and D.Vural (2012) [4, 16], our approach will entail

utilizing high-resolution neutron scattering instruments to enhance our ability to detect these

critical saturation points. Such advancements will not only enhance our understanding of

protein behavior under various thermal conditions but also facilitate the use of proteins as

atom traps in quantum computing.

Appendix A: Appendix

1. Infinite Square Well

The symmetric and asymmetric solutions:

⟨x|ns⟩ = ψs(x) =
√

1
L
cos
(

π(2k+1)x
2L

)
⟨x|na⟩ = ψa(x) =

√
1
L
sin
(
π2kx
2L

) (A1)

a. The MSD at T=0K

The MSD for even and odd energy levels n:
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⟨x2⟩ns ≡ ⟨ns|x2 |ns⟩ =
1

L

L∫
−L

x2
(
cos

(
π(2k + 1)x

2L

))2

dx =
L2

3
− 2L2

π2n2

⟨x2⟩na ≡ ⟨na|x2 |na⟩ =
1

L

L∫
−L

x2
(
sin

(
π2kx

2L

))2

dx =
L2

3
− 2L2

π2n2
(A2)

Thus, the MSD for the symmetric and antisymmetric energy levels has the same expression.

b. The MSD at T ̸= 0

⟨∆x2⟩ =

∞∑
n=1

⟨n|∆x2 |n⟩ e−En
kT

∞∑
n=1

e−
En
kT

=

∞∑
n=1

(
L2

3
− 2L2

π2n2

)
e−

1
kT

n2π2h̄2

8mL2

∞∑
n=1

e−
1
kT

n2π2h̄2

8mL2

(A3)

We will try to simplify the expression A3 in order to find the temperature dependence of

the ∆x2.

Definition A.1 Jacobi theta function

Θ(t) =
∞∑

n=−∞

exp
(
−πn2t

)
(A4)

Identity 1 Jacobi’s Identity

Θ(t) =
1√
t
Θ

(
1

t

)
(A5)

For the relatively small values of t ≤ 0.01 : Θ(t) ≈ 1√
t
[17]

Identity 2
∞∫
t

exp
(
−πτn2

)
dτ =

exp(−πtn2)

πn2
(A6)

Simplification 1 Partition function Z

Z(T ) =
∞∑
n=1

exp

(
− 1

kT

n2π2h̄2

8mL2

)
≡

∞∑
n=1

exp
(
−πtn2

)
=

Θ(t)− 1

2
(A7)
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Let

t∗∗ ≡ πh̄2

8kmL2
· 1

T ∗∗ (A8)

Where T ∗∗ is the temperature of the phase transition when the infinite square well approxi-

mation is starting to be applicable, because of the high population of the high energy levels.

Simplification 2

∞∑
n=1

2L2

π2n2
exp

(
− 1

kT

n2π2h̄2

8mL2

)
≡ C

∞∑
n=1

1

n2
exp

(
− 1

kT

n2π2h̄2

8mL2

)

= C

∞∑
n=1

1

n2
exp
(
−πtn2

)
= Cπ

∞∫
t

∞∑
n=1

exp
(
−πτn2

)
dτ

= Cπ

∞∫
t

∞∑
n=1

exp
(
−πτn2

)
dτ = Cπ

t∗∗∫
t

∞∑
n=1

exp
(
−πτn2

)
dτ + Cπ

∞∫
t∗∗

∞∑
n=1

exp
(
−πτn2

)
dτ

= Cπ

t∗∗∫
t

∞∑
n=1

exp
(
−πτn2

)
dτ + const∗∗ = Cπ

t∗∗∫
t

Θ(τ)− 1

2
dτ + const∗∗

≈ Cπ

t∗∗∫
t

1√
τ
− 1

2
dτ + const∗∗ = C

π

2

(
2
√
t∗∗ − 2

√
t+ t− t∗∗

)
+ const∗∗ (A9)

Simplification 3

⟨∆x2⟩ = L2

3
−Cπ·2

√
t∗∗ − 2

√
t+ t− t∗∗ + const∗∗

Θ(t)− 1
≈ L2

3
−Cπ·2

√
t∗∗ − 2

√
t+ t− t∗∗ + const∗∗

1√
t
− 1

=

L2

3
− 2L2

π2
π ·

2
√
t∗∗ − 2

√
t+ t− t∗∗ +

∞∫
t∗∗

(Θ(τ)−1)
2

dτ

1√
t
− 1

(A10)

Simplification 4

∞∫
t∗∗

Θ(τ)− 1

2
dτ =

∞∫
t∗∗

∞∑
n=1

exp
(
−πτn2

)
dτ

=
1

π

∞∑
n=1

1

n2
exp
(
−πt∗∗n2

)
(A11)


1
π

∑∞
n=1

1
n2 exp(−πt∗∗n2) < 1

π

∑∞
n=1

1
n2 = π

6

1
π

∑∞
n=1

1
n2 exp(−πt∗∗n2) > 1

π
exp(−πt∗∗)

(A12)
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2. Harmonic Oscillator

a. The MSD

En = h̄ω

(
n+

1

2

)
= ⟨Wp⟩+ ⟨Wk⟩ = 2⟨Wp⟩ = mω2⟨∆x2⟩n (A13)

Z =
∞∑
n=0

exp

(
−
h̄ω
(
n+ 1

2

)
kT

)
=

exp
(
− h̄ω

2kT

)
1− exp

(
− h̄ω

kT

) =
1

2 sinh
(

h̄ω
2kT

) (A14)

β ≡ 1

kT
(A15)

⟨E⟩ = − 1

Z
∂βZ =

h̄ω

2
coth

(
h̄ω

2kT

)
(A16)

⟨∆x2⟩ = h̄

2mω
coth

(
h̄ω

2kT

)
(A17)
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