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Abstract

In binaural audio synthesis, aligning head-related impulse responses (HRIRs) in time has been an important pre-
processing step, enabling accurate spatial interpolation and efficient data compression. The maximum correlation
time delay between spatially nearby HRIRs has previously been used to get accurate and smooth alignment by
solving a matrix equation in which the solution has the minimum Euclidean distance to the time delay. However, the
Euclidean criterion could lead to an over-smoothing solution in practice. In this paper, we solve the smoothing issue
by formulating the task as solving an integer linear programming problem equivalent to minimising an L1-norm.
Moreover, we incorporate 1) the cross-correlation of inter-aural HRIRs, and 2) HRIRs with their minimum-phase
responses to have more reference measurements for optimisation. We show the proposed method can get more
accurate alignments than the Euclidean-based method by comparing the spectral reconstruction loss of time-aligned
HRIRs using spherical harmonics representation on seven HRIRs consisting of human and dummy heads. The extra
correlation features and the L1-norm are also beneficial in extremely noisy conditions. In addition, this method can
be applied to phase unwrapping of head-related transfer functions, where the unwrapped phase could be a compact
feature for downstream tasks.

1 Introduction

Head-related transfer functions (HRTFs) describe the
response of the travelling path from the sound source to
human ears in different directions. These functions en-
code the acoustic scattering caused by the head, pinna,
and torso, which humans have learnt to interpret as
cues to perceive the spatial direction of the sound. Dif-
ferences in human morphology make HRTFs differ
between individuals. Using personalised HRTFs to
simulate virtual acoustic environments creates an im-
mersive user experience in games, virtual reality (VR)
applications and the metaverse.

Theoretically, HRTFs vary continuously when the
sound sources move from one direction to another.
Continuous representation is feasible on simple ob-
jects, e.g., a rigid sphere model, but not for human
subjects with complex shapes. The common practice is

to measure HRTFs in an anechoic chamber on discrete
spatial directions and use interpolation methods to fill
the gap between directions, assuming the spatial reso-
lution is dense enough. Various interpolation methods
have been proposed, including linear interpolation [8],
principle component analysis [19], and interpolation
of spherical harmonics (SHs) [7, 20, 3, 5, 16, 2, 17, 1].
We focus on SHs interpolation in this paper.

The choice of representation affects interpolation ac-
curacy and the required computational resources. Us-
ing HRIRs directly requires many SHs to reduce in-
terpolation errors [20]. A lot of the spatial complex-
ity comes from the differences in the travelling time
of sound in each direction, known as time-of-arrivals
(TOAs). Various representations have been used to mit-
igate this effect, including time-aligned HRIRs [17, 1],
calibrating ear positions to the centre of the head [2],
or inversely filtering HRTFs with a fixed rigid sphere
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HRTFs [16]. For time alignment, using the correlation
between paired HRIRs to measure time differences has
shown to be highly resistant to noise [17, 15].

Naturally, many different HRIR pairings can be made,
and due to the spherical sampling, multiple pairs can
be equidistant. Therefore, the time alignment is best
done globally instead of pairwise. Given the measured
time differences, Reijniers et al. [17] consider all the
directions at once and formalise the TOA estimation
problem as solving a matrix equation, where the deriva-
tives to TOAs of the Euclidean distance to the measure-
ments are zeros, achieving state-of-the-art (SOTA) in
HRIRs alignment. However, least square solutions are
known to be over-smooth in practice and more sensi-
tive to outliers from the measurement (here, we mean
the noisy time differences) compared to minimising
L1-norm [13].

This paper aims to solve the over-smoothing and noise-
sensitivity issues by extending the SOTA to minimise
L1-norm with integer linear programming (ILP). We
connect HRTF measurement directions into a graph
with edges representing the measured difference in the
target quantity. We formalise the problem as minimis-
ing residuals on edges, subjecting to the constraint that
the differences in every elementary cycle must sum to
zero. This method strongly relates to the minimum-cost
network flow approach in the task of phase unwrapping
(PU) [4] and, to the best of the authors’ knowledge, has
not been applied to HRIRs TOA estimation nor even
HRTFs PU, where the latter combining with HRTFs
magnitude responses was shown to be a suitable repre-
sentation for interpolation as well [7, 20, 3]. Moreover,
we propose adding two other correlation-based time
difference features as extra hints for TOA estimation.

The paper is organised as follows. Section 2 and 3 de-
tailed our proposed TOA estimation and PU methods.
Section 4 shows our evaluations in comparing the re-
constructed errors of time-aligned HRIRs on seven dif-
ferent HRTFs. We then compare the robustness of our
methods to Reijniers et al. [17] with simulated noisy
HRTFs. Finally, we show the unwrapped phase of the
SONICOM KEMAR HRTFs [6] using the proposed
method as a demonstration.

2 HRIRs time-of-arrival estima-
tion

Given a subject’s HRIRs measured in N directions on a
2-sphere θi ∈ S2, we wish to calculate the TOAs τ

L/R
i

of each HRIR hL/R
i [t] in θi. In the following discus-

sions, we treat each ear independently for brevity and
use the left ear as an example. Unless we mention it
specifically, we treat τL

i as τi.

Assuming we do not know τi but we know the time
differences between arbitrary directions θi and θ j:
Γi, j = τ j − τi ∀(i, j). We then create a connected graph
G = (V (G),E(G)) by considering the directions as a
set of vertices V (G)= {0,1, . . . ,N−1}. Its edges E(G)
are drawn for every pair of vertices for which the time
difference Γi, j is known. Any TOA τi can then be
obtained, apart from a constant, by integrating time
differences Γe along the path from a reference vertex
to vertex i.

τi = ∑
e∈ΦG(0,i)

Γe +C, (1)

in which ΦG(0, i) ⊂ E(G) are edges that form a path
from vertex 0 to i. We chose 0 as the starting point
for convenience. The unknown C is not an issue when
calculating inter-aural time differences (ITDs, τL

i − τR
i )

and aligning HRIRs, which we will discuss later in
Sec. 2.4.

2.1 Cross-correlation-based estimation

We describe Γi, j with Γ̂i, j = argmaxt hi[t]⋆h j[t] and a
residual Ki, j as

Γi, j = Γ̂i, j +Ki, j. (2)

If the correlation-based method is accurate enough,
|Ki, j| should be small. Estimating Γi, j becomes
minimising |Ki, j| while being subject to constraints
C(K; Γ̂,G) that we chose.

2.2 The irrotational property of Γ

Any cycle P ⊂ G represents a path with the same vertex
as the start and end points. Plugging P into Eq. (1)
results in

∑
(u,v)∈E(P)

Γu,v = ∑
v∈V (P)

τv − ∑
u∈V (P)

τu = 0. (3)
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One way to think of it is that τ(θ) is a continuous
function differentiable everywhere on S2, and for any
enclosed path P on S2, the integration

∫
u∈P ∇τ(u)∂u =

0. The same applies to discrete τi. We utilise this
irrotational property and substitute Eq. (2) into (3) to
get

∑
e∈E(P)

Ke =− ∑
d∈E(P)

Γ̂d . (4)

Multiple solutions of Ke to Eq. 4 exist with just one
cycle. Assuming there are cycles S = {P0,P1, . . .}
where ∪P∈SE(P) ⊆ E(G) = {e0,e1, . . .}, we can ex-
tend Eq. (4) into the following matrix equation:

Ak =−Ax

x = [Γ̂e0 , Γ̂e1 , . . . ]T

k = [Ke0 ,Ke1 , . . . ]T

Ai j =


−1, (v,u) ∈ E(Pi)

1, (u,v) ∈ E(Pi)

0, otherwise

 : (u,v) = e j.

(5)

We use Eq. (5) as our constraint C(K; Γ̂,G). Because
the unit of Γ̂ is the number of audio samples, the so-
lution to Γ are integers. Putting this all together, es-
timating the time difference Γ becomes solving the
following ILP problem:

min
k

wT |k|

s.t. Ak =−Ax,
(6)

where w = [we0 ,we1 , . . . ]T is a weighting vector.

2.3 The cycle-less approach

The size of A is |S|× |E(G)|, and solving Eq. (6) can
be computationally intensive if the number of cycles |S|
is large. Moreover, if S cannot be easily defined when
constructing G, searching the necessary cycles in G
can be time-consuming. We can convert the constraint
from the cycles to the edges according to the edgelist
method [18, 12], resulting in

min
k,τ

wT |k|

s.t.
[
Aedge I

][τ

k

]
= x

Aedge
i j =


−1, j = u

1, j = v

0, otherwise

 : (u,v) = ei.

(7)

This formulation solves τ jointly and does not require
integration (Eq. (1)) afterwards. The size of the matrix
[Aedge I] is |E(G)|× (|E(G)|+N).

The two formulations are equal as long as ∪P∈SE(P) =
E(G) [18]. Nevertheless, the required time to solve
them varies depending on the structure of G and the
selected S.

2.4 The least square approach

Prior work by Reijniers et al. [17] minimises the fol-
lowing criterion:

min
τ

∑
(u,v)∈E(G)

wu,v[Γ̂u,v − (τv − τu)]
2

+λ ∑
u∈V (G)

τu.
(8)

The second term is for regularisation purposes. If we
neglect the regularisation term, plug Eq. (2) into Eq.
(8), it is the same as minimising Eq. (7) but the ob-
jective becomes quadratic: min

k,τ
kT diag(w)k. In other

words, we are optimising the same equation from [17]
but using L1-norm as the criterion, not L2.

The optimal solution is when the derivatives of Eq.
(8) to τ and λ are zeros, which leads to solving the
following equation:[

diag(W ·1)−W
1

]
τ

=
[
diag(WX)+λ 0

]
Wi j =


wi, j, (i, j) ∈ E(G)

w j,i, ( j, i) ∈ E(G)

0, otherwise


Xi j =


Γ̂i, j, (i, j) ∈ E(G)

−Γ̂i, j, ( j, i) ∈ E(G)

0, otherwise

 .

(9)

The matrix size of the equation is (|V (G)|+ 1)×
|V (G)|.

We set C to the same value for both ears so it can be
cancelled after the ITD subtraction. We did this by
assuming ∑

N−1
i=0 τL

i = ∑
N−1
i=0 τR

i = 0, which is a good
approximation due to the symmetric characteristic of
HRIRs. For HRIRs alignment, we use

⋆
τi = τi −minτi.
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2.5 Inter-aural cross-correlation features

So far, we treat each ear independently without consid-
ering any inter-aural relation. The inter-aural cross-
correlation hL

i [t] ⋆ hR
i [t] has been used to calculate

ITDs before [11]. This feature can be added easily
to all the methods above by adding N extra edges
to connect the two graphs for each ear. Assuming
the graph for the left ear GL = G and the right ear
GR = ({N,N+1, . . . ,2N−1},{(i+N, j+N) : (i, j) ∈
E(G)}), the joint graph is G joint = ({0,1, . . . ,2N −
1},E(GL)∪E(GR)∪{(i, i+N) : 0 ≤ i < N}).

We estimate the inter-aural difference simply as
Γ̂i,i+N = argmaxt hL

i [t] ⋆ hR
i [t]. The assumption of C

being equal for both ears is unnecessary as the inter-
aural relation is jointly estimated.

2.6 Incorporating absolute time informa-
tion

The maximum correlation of hi[t] with its minimum-
phase version hmin

i [t] is a close estimate of τi based on
the assumption that hi[t]≈ hmin

i [t − τi], which holds in
most directions [14]. We can also incorporate this into
the above methods. Let us introduce an auxiliary posi-
tion δ : τδ = 0 and define Γ̂δ ,i = argmaxt hmin

i [t]⋆hi[t].
Eq. (6) can be applied straightforwardly with Gδ =
({δ} ∪V (Q),{(δ , i) : 0 ≤ i ≤ maxV (Q)} ∪ E(Q)})
where Q∈{G,G joint}. Note that we can use integration
path ΦGδ (δ , i) to cancel C because we know τδ = 0.

For the cycle-less approach, replace Aedge with Aδ ,
where

Aδ
i j =


−1, j = u∩u ̸= δ

1, j = v

0, otherwise

 : (u,v) = ei. (10)

We propose a similar version of Eq. (9) with Gδ as

diag(W ·1+wδ )τ −Wτ

= diag(WX)+diag(wδ )xδ

xδ = [Γ̂δ ,0, Γ̂δ ,1, . . . ]
T

wδ = [wδ ,0,wδ ,1, . . . ]
T

(11)

which is when the derivatives with respect to τ of the
following equation are zeros:

min
τ

∑
(u,v)∈E(Gδ )

wu,v
[
Γ̂u,v − (τv − τu)

]2
. (12)

The size of the matrix equation is (|V (Gδ )|−1)2. An
example of Gδ is shown in Fig. 1.

2.7 The choice of weighting w

Exponential weighting based on the distance between
directions has been proposed in [17]:

wi, j = exp
(
−

cos−1(θi ·θ j)

σ

)
, (13)

with σ set to 8
◦

perform the best. This weighting em-
phasises finer local details, which is reasonable be-
cause HRIRs are more similar for closer directions,
and their correlations are more accurate. For inter-aural
edges wi,i+N , we replace θ j in Eq. (13) to θi’s reflection
through the plane y = 0, like virtually placing the other
ear on the symmetric position. For wδ ,i, we sampled a
few values in [0.1,1] and empirically found 0.1 works
well, therefore we use 0.1 in the rest of the paper.

The exponential weighting requires two hyperparam-
eters σ and a constant weight for wδ ,i. To counter
this, we propose a parameter-free weighting method,
which is setting wi, j = ∑t h̃i[t − Γ̂i, j]h̃ j[t] where h̃[t] is
the normalised h[t] so 0 ≤ wi, j ≤ 1 (same for wδ ,i =

∑t h̃min
i [t − Γ̂δ ,i]h̃i[t]). This is based on our hypothesis

that if two HRIRs have similar waveforms, then their
maximum correlation should be high, and their Γ̂i, j is
closer to Γi, j.

3 HRTFs phase unwrapping

The phase is a temporal quantity representing periodic
signals’ angular position. In HRTFs, it is a contin-
uous function of spatial coordinate and angular fre-
quency φ(θ ,ω). We can measure it from HRTFs
Hi[ f ] ∈ C at frequency index f , which defines dis-
crete sample points over ω . However, although the
φi[ f ] can be any real number, the measured phase
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Figure 1: Two simple graphs consists of three measurement directions {a,b,c}, and an auxiliary vertex δ with
τδ = 0. The elementary cycles in graphs can be categorised into five groups on the right, with four types of edges:
inter/intra-aural time differences, absolute time lags, and inter-frequency phase differences. We use ( 1⃝- 4⃝) for
TOA estimation and ( 1⃝, 5⃝) for PU.

ψi[ f ] = tan−1 (Im(Hi[ f ])/Re(Hi[ f ])) is wrapped inside
[−π,π). Their relation is represented as

φi[ f ] = ψi[ f ]+2πLi[ f ],Li[ f ] ∈ Z. (14)

The task of HRTFs PU is to find a set of residual Li[ f ]
that best describes the phase response.

3.1 Unwrapping along the frequency axis

The simplest solution [7] is integrating the wrapped
phase differences along the frequency axis:

φi[ f ] = φi[0]+
f

∑
l=1

[ψi[l]−ψi[l −1]]2π
, (15)

where φi[0] = ψi[0] and [x]2π = x+π (mod 2π)−π .
This method is only valid when the Itoh condition [10]
is met, which is |φi[ f ]−φi[ f −1]| ≤ π so the wrapped
difference equals to the true difference. Violating this
condition creates an aliasing effect and results in am-
biguous phase differences.

3.2 Unwrapping across S2

Zaar [20] is the first and only work that uses phase dif-
ferences between the nearby spatial directions for PU.
In their method, PU is performed on each frequency
independently. Starting from the ipsilateral side of the
sphere, where the HRIR has the strongest energies and
less time delay, a set of rules is used to unwrap the
directions along the way towards the contralateral side.

This method creates significantly fewer spatial discon-
tinuities across the sphere than the naive frequency-
based method. However, as the frequency increases,
the Itoh condition is less likely to be met, as more peri-
ods are needed for high frequencies to travel the same
given distance. Phase differences along the frequency
axis are more reliable and could therefore enhance the
performance of spherical unwrapping.

3.3 Unwrapping with both S2 and f axis

Given the previous explanation, PU equals TOA esti-
mation with an extra frequency dimension. As long

Accepted at AES 156th Convention, 2024 June
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as the wrapped phase can be represented as a graph,
we can plug it directly into Eq. (6) or (7) to calculate
Li[ f ]. Only the definition of Γ̂ is changed, where we
use the wrapped phase differences to substitute time
differences.

We view the frequency index f in each direction θi
as a single vertex. F is the number of frequency bins.
We use the same graph G from Section 2 for each
frequency, defined as {G f : 0 ≤ f < F} and G f =
({ f N, f N + 1, . . . ,( f + 1)N − 1},{(i + f N, j + f N) :
(i, j) ∈ E(G)}). We add edges along the frequency
axis Eψ = {(v,v+N) : v ∈ {0,1, . . . ,(F −1)N −1} to
connect ψi[ f ] and ψi[ f +1], resulting in one joint graph
Gψ = ({0,1, . . . ,FN −1},∪0≤ f<F E(G f )∪Eψ}). An
example of Gψ is shown in Fig. 1.

To simplify notation, we use φu to represent
φu (mod N)[⌊ u

N ⌋] and use the same for similar variables.
The normalised phase differences are

φv −φu

2π
=

1
2π

(ψv −ψu +2π(Lv −Lu))

=
[ψv −ψu]2π

2π
+Ku,v.

(16)

The RHS of Eq. (16) becomes Eq. (2)’s RHS when we
substitute [ψv−ψu]2π

2π
with Γ̂u,v. If we further assume that

the residuals Ku,v are close to zeros in the HRTFs, solv-
ing it becomes the same problem as TOA estimation. It
is a widely used method for PU on synthetic aperture
radar data [4, 18, 12].

To solve the violations of the Itoh condition (high
amount of nonzero Ku,v) in high frequencies, we pro-
pose unwrapping the phase on the aligned HRIRs in-
stead. This trick greatly reduces the spherical phase
differences between directions.

4 Evaluations and discussions

We followed previous works [8, 20] to build a graph
from the measurements using the convex hull algorithm.
We set λ in Eq. (8) to 0.1. All the HRIRs were over-
sampled ten times before computing correlations for a
finer time resolution. We set all the weights to one for
the PU experiment. We use the regularised least square
method [5] with a regularisation of 10−5 to perform
SH transform. Table 1 summarises the HRTFs we used
in this paper.

We tested three algorithms:

• SIMP: L1 criterion, simplices (cycles)-based
(Eq. (6))

• EDGY: L1 criterion, edgelist-based (Eq. (7))
• LS: L2 criterion, least squared solutions (Eq. (9)

and (12))

and three weighting schemes:

• NONE: uniform weights
• EXP: exponential weights [17]
• CORR: proposed correlation weights in Sec. 2.7

Together with whether to include the minimum-phase
or inter-aural cross-correlation features, we have 36
configurations in total. Our implementations and evalu-
ation scripts are publicly available on GitHub 1.

4.1 Reconstruction errors of ITDs and
aligned HRIRs

First, we evaluated the accuracy of TOAs for HRIR
alignment. Similar to [15], we encoded the time-
aligned HRIRs (hi[t + τi]) and ITDs (τl,i − τr,i) into
real SH basis functions. We set the SH order to four
for both features, sufficient to capture the variations in
the aligned HRIRs (see Fig. 2). We measured the ITD
distortion ( 1

N ∑
N
i=0 |ITDi− ˆITDi|) and log-spectral dis-

tance (LSD) between the original and the decoded
ITDs and HRIRs average across both ears. The SH
order is proportional to its encoding capacity, and the
reconstruction metrics implicitly tell us the amount of
higher-order SHs (non-smooth) that are not encoded.
Using the L2 criterion is more likely to result in over-
smoothing TOAs, which is good for ITD reconstruction
but worse for accurate HRIR alignment reflected by
LSD.

Table 3 verifies our hypothesis, where LS generally
achieves the lowest ITD distortion while having higher
LSD, meaning its TOAs are too smooth to be accu-
rate. On the contrary, the TOAs we got from EDGY
and SIMP align HRIRs better. EDGY and SIMP
achieve very similar but not identical performances,
with EDGY having a slight advantage in ITDs recon-
struction. After inspection, we found that 30% to 40%
of the time, they arrive at the same solutions, and they
have very few differences the rest of the time, indicat-
ing multiple optimal solutions exist in our ILP problem.

1github.com/yoyololicon/hrtf-ilp
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Table 1: Details of HRTFs used for evaluation, consisting of dummy heads and real subjects. The runtime was
measured on a MacBook with M1 Pro and averaged across all 12 configurations for each method.

Database Simplified filename (.sofa) fs (kHz) N |E(G)| TOAs runtime (s)
LS SIMP EDGY

AACHEN MRT01 44.1 2304 9141 0.164 1.041 1.652
ARI hrtf_nh4 48 1550 6119 0.072 0.540 0.479
CIPIC subject_003 44.1 1250 4963 0.055 0.414 0.341
RIEC *_subject_001 48 865 3385 0.033 0.282 0.265
SADIE H3_*_256tap_FIR 48 2818 11266 0.120 3.559 2.668
SONICOM KEMAR_*_SmallEars_FreeFieldComp_* 44.1 828 3237 0.042 0.193 0.166
THK HRIR_L2702_NF100 48 2702 10802 0.098 1.609 1.317

Table 2: The best configuration for each dataset to
achieve the lowest LSD.

Dataset Alg. Min. Cross Weight LSD (dB)

AACH. SIMP w/o w/o NONE 3.61

ARI SIMP w/ w/o EXP 3.82

CIPIC LS w/o w/o NONE 3.08

RIEC EDGY w/ w/ EXP 3.19

SADIE SIMP w/o w/o NONE 5.01

SONIC. EDGY w/o w/o NONE 2.68

THK EDGY w/o w/o CORR 3.01

Regarding the weighting schemes, EXP performs the
best in both metrics and all the datasets on average.
CORR gives a slight advantage over uniform weights.

Table 2 shows that 6 out of 7 datasets achieve the lowest
LSD with the L1 criterion. The best weighting scheme
varies among datasets, and in contrast to Table 3, only
two datasets use EXP for the best performance. Be-
sides ARI and RIEC, the extra correlation features do
not help for most datasets. These findings show that
our proposed ILP method generally performs the best.

4.2 Robustness to noise

We added random white noise with different SNRs to
the SONICOM and CIPIC HRTFs from Table 1. Simi-
lar to Gardner and Martin [9], we calculated the mea-
surement SNR by selecting the HRIRs at the front (0◦

azimuth, 90◦ colatitude) and treating the top 10% and
last 10% audio samples as signals and noises, resulting
in around 75 dB for SONICOM and 60 dB for CIPIC.

We then used these values to simulate different noisy
conditions. EXP weighting is used in this experiment.
We pick EDGY as opposed to SIMP due to its lower
average runtime (Table 1).

From Fig. 2 and Fig. 3, we see that with high SNR,
both EDGY and LS behave similarly, and there is no
difference in including extra features or not. When
SNR decreases (≤ 18 dB), LS produces more spikes in
ITDs than EDGY, especially (l) from both figures, the
wrong estimations spreading the whole sphere. This
effect can also be seen from ITD distortion (b) where
LS has higher reconstruction errors.

As EDGY is less sensitive to noise, it aligns the HRIRs
better in low SNR, and the effect gets more prominent
with lower SH order (e-f). We also see differences in
the use of correlation features. For EDGY, exclud-
ing minimum-phase correlations aligns HRIRs slightly
better. For LS, including extra features always outper-
forms just using intra-aural correlation. However, LS
(full) is not the best performant, but LS (w/o Cross) is,
implying there is a negative effect on minimum-phase
correlation from cross-correlation features in low SNR
conditions.

4.3 Reconstruction errors of phase delays

We used the left ear from SONICOM HRTFs for PU.
Due to the lack of public implementation of Zaar [20],
we simulated spherical unwrapping using ILP by solv-
ing each frequency separately and then naively concate-
nating the results with the number of phase jumps at
the minimum between frequencies.

Accepted at AES 156th Convention, 2024 June
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Table 3: The average ITD distortion (µs) and HRTFs LSD (dB) across different configurations.
AACHEN ARI CIPIC RIEC SADIE SONICOM THK

Algorithm △ITD LSD △ITD LSD △ITD LSD △ITD LSD △ITD LSD △ITD LSD △ITD LSD

EDGY 12.26 3.80 17.68 4.08 13.06 3.34 13.22 3.35 31.22 5.45 8.41 2.82 8.51 3.30
SIMP 12.30 3.80 17.70 4.08 13.09 3.34 13.26 3.35 31.27 5.46 8.48 2.82 8.54 3.30

LS 11.32 3.96 17.22 4.20 12.42 3.51 12.65 3.46 31.44 6.30 7.81 2.98 8.40 3.65

Weight

EXP 11.00 3.73 17.32 3.90 12.77 3.26 12.32 3.26 28.24 5.63 7.15 2.75 6.87 3.23
CORR 12.32 3.91 17.60 4.22 12.89 3.45 13.26 3.44 31.72 5.78 8.67 2.92 9.18 3.51
NONE 12.55 3.92 17.67 4.25 12.91 3.47 13.54 3.47 33.96 5.80 8.88 2.95 9.40 3.51

Figure 2: Noise robustness experiment on the SONICOM HRTF. The LSD (d-f) is calculated between the measured
(clean) and the reconstructed noisy HRTFs. N is the SH order. (g-l): visualisations of ITDs using all the correlation
features (full). Each row shares the same noise SNR. Mollweide projection is used to plot the hemisphere, and
each dot is a sampled direction. The ITDs are clipped to ±0.8 ms.

We convert the result to phase delay − φ [ f ]
ω f

and show
them in Fig. 4. Frequency unwrapping introduces phase
jumps that create discontinuities along the spherical
(horizontal in the figure) directions; on the other hand,
spherical unwrapping has a lot of discontinuities along
the frequency axis (vertical in the figure). Our method
behaves somewhere between the two, with discontinu-
ity boundaries crossing both dimensions.
To see the smoothness of unwrapped phases, we ran the
same experiment from Sec. 4.1 on phase delays for each
frequency and calculated reconstruction errors the same
way as for ITDs. The result is shown in Fig. 5. Once

the frequency is above 6 kHz, the error starts climbing
drastically for frequency unwrapping. Our method
performs comparable to spherical unwrapping, but the
error varies smoother for frequency > 10 kHz. This
phenomenon implicitly indicates that the unwrapped
phase sphere at each frequency is similar to its nearby
frequencies, thus having similar distortion.
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Figure 3: Noise robustness experiment on the CIPIC HRTF. The details for each subplot are the same as Fig. 2.

5 Summary

In this work, we unify the problem of TOA estimation
and PU of HRTFs with a graph-based data structure.
By changing the data unit of graph edges, we can solve
both problems with the same ILP equation.

For TOA estimation, the proposed method is a vari-
ant of the previous SOTA with an L1 criterion instead.
We show the L1 criterion makes more accurate HRIR
alignment on seven HRTFs and is more robust than the
previous SOTA in extremely noisy conditions on two
selected HRTFs. We also demonstrate the flexibility
of our method to include other time difference mea-
surements, providing extra guidance and constraints to
enhance performance in noisy conditions.

For PU, our method is the first to utilise all available
phase differences and unwrap them jointly per ear. We
show that the proposed method has less spatial dis-
continuity than naive unwrapping and less frequency
discontinuity than pure spherical unwrapping. Our
method can be improved further with custom weights
or more advanced graph-based PU, such as the branch
cut method, which is left for future work.
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