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Consider a newsvendor problem with an unknown demand distribution. When addressing the issue of distri-
butional uncertainty, we distinguish ambiguity under which the newsvendor does not differentiate demand
distributions of common distributional characteristics (e.g., mean and variance) and misspecification under
which such characteristics might be misspecified (due to, e.g., estimation error and/or distribution shift). The
newsvendor hedges against ambiguity and misspecification by maximizing the worst-case expected profit reg-
ularized by a distribution’s distance to an ambiguity set of distributions with some specified characteristics.
Focusing on the popular mean-variance ambiguity set and optimal-transport cost for the misspecification,
we show that the decision criterion of misspecification aversion possesses insightful interpretations as dis-
tributional transforms and convex risk measures. We derive the closed-form optimal order quantity that
generalizes the solution of the seminal Scarf model under only ambiguity aversion. This highlights the impact
of misspecification aversion: the optimal order quantity under misspecification aversion can decrease as the
price or variance increases, reversing the monotonicity of that under only ambiguity aversion. Hence, ambi-
guity and misspecification, as different layers of distributional uncertainty, can result in distinct operational
consequences. We quantify the finite-sample performance guarantee, which consists of two parts: the in-
sample optimal value and the out-of-sample effect of misspecification that can be decoupled into estimation
error and distribution shift. This theoretically justifies the necessity of incorporating misspecification aver-
sion in a non-stationary environment, which is also well demonstrated in our experiments with real-world
retailing data. Our framework can be extended to consider multiple products, distributional characteristics

specified via optimal transport, and misspecification measured by ¢-divergence.

Key words: newsvendor, model misspecification, moment condition, optimal transport, performance

guarantee.

1.

Introduction

Newsvendor model, as a building block for dealing with uncertain demand in operations manage-
ment, has found its successful applications in various domains, including inventory management

(Chen et al. 2007, Berling and Martinez-de-Albéniz 2011, Donohue et al. 2018), revenue manage-
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ment (Besbes et al. 2018), capacity planning (Simchi-Levi and Wei 2015), and healthcare (Olivares
et al. 2008), to name a few. When the true demand distribution is fully known, the celebrated crit-
ical fractile determines an optimal order quantity that maximizes the expected profit. In practice,
however, the newsvendor often faces incomplete knowledge about the demand distribution. Hence,
it is often difficult (if not impossible) to precisely articulate the true demand distribution, causing
a commonly known issue of demand ambiguity to the newsvendors.

A natural way to mitigate demand ambiguity is to utilize only partial distributional character-
istics available for decision-making. In this vein, mean and variance—arguably two of the most
widely used and easy-to-estimate statistics that capture the key location and dispersion charac-
teristics of the underlying distribution respectively—have been employed. This can be traced back
to the seminal work of Scarf (1958) that considers an ambiguity-averse newsvendor model maxi-
mizing the worst-case expected profit over an ambiguity set of probability distributions with the
same mean and variance.! In essence, with such a mean-variance ambiguity set, the newsvendor
specifies her belief about the (true) demand distribution via an approximation by using mean and
variance characteristics. This is also well statistically justified,” especially in the context of the
newsvendor problem, by noting that the single-dimensional demand distribution’s quantile (i.e.,
the critical-fractile solution) can be largely characterized by the mean and variance statistics, or
even perfectly determined under many common distributions (e.g., elliptical, uniform, and expo-
nential, see Meyer 1987). This also underpins the implication that solutions of the ambiguity-averse
and nominal ambiguity-neutral models characterized by the same mean and variance can share
several key features in operational properties: for instance, the order quantity increases in price
(see Sections 2 and 4.2 for more details). Apart from the newsvendor problem (Perakis and Roels
2008, Han et al. 2014), the mean-variance ambiguity set has been studied in stochastic optimization
(Popescu 2007), and used in various applications, including recent literature on decision theory
(Miiller et al. 2022), mechanism design/pricing (Carrasco et al. 2018, Chen et al. 2022), and risk
management (Li et al. 2018, Nguyen et al. 2021).

However, in many practical situations, it is still challenging to accurately estimate the mean and
variance of the demand. For instance, in retailing industries (e.g., E-commerce, grocery and super-
market), more and more commodities are of ever shorter life cycles (Calvo and Martinez-de Albéniz
2016, Sun et al. 2021), and many enterprises lack the resources for effective data collection and
1 A more general version of the Scarf model allows the mean and variance to be uncertain and to vary within some

predetermined intervals, which turns out to be equivalent to the Scarf model characterized by the predetermined
lower bound of mean and upper bound of variance (see Natarajan et al. 2011 or Remark 1).

2Tt is well known that under mild conditions, a probability distribution can be uniquely determined by all integer-order
moments (Durrett 2019), among which the first two moments are the most commonly used ones.
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Figure 1 Daily demand of a product of drinking water over one year with monthly mean and standard deviation
(STD). The sign ‘v’ (resp., ‘X’) means that the monthly mean or STD falls in (resp., does not fall in)
the 95% confidence interval estimated with the demand data in the preceding month. Notably, in only 2

out of 11 (resp., 1 out of 11) instances, the mean (resp., variance) falls within the confidence interval.

Notes. The confidence intervals on the mean and variance are constructed leveraging the t-statistic and y>-statistic,

respectively, without knowing the true values of mean and variance.

analysis, especially for new products (Saghafian and Tomlin 2016, Feiler and Tong 2022). There-
fore, insufficient historical data—even when the underlying demand process is stationary—can
result in non-negligible estimation error that challenges the newsvendors’ decision under demand
ambiguity. On the other hand, the uncertainty is exacerbated when the underlying demand process
becomes non-stationary, due to, for instance, the complicated (time-varying) determinants for the
demand (Keskin and Zeevi 2017, Keskin et al. 2022). This can lead to distribution shift—the future
demand distribution is different from the past®*—under which the mean and variance characteristics
can constantly change over time, making them difficult to estimate from historical data. In Fig-
ure 1, we illustrate that even the confidence interval of either mean or variance may depreciate
in a non-stationary demand environment. In sum, either estimation error or distribution shift can
lead to the mean and variance parameters being misspecified, and consequently, the optimal order
quantity prescribed under ambiguity (in the Scarf model) may perform inexpertly. This is known
as model misspecification in economics and statistics (Hansen 2014, Hansen and Miao 2018). In
our context, it refers to the possibility that the true demand distribution may not reside in the
ambiguity set with the same distributional characteristics as specified (e.g., mean and variance in
the Scarf model); see Figure 2 for an illustration.

The above discussion motivates us to caution against the potential issue of model misspecifica-
tion in the fundamental newsvendor problem. To this end, we introduce a misspecification-averse
(and ambiguity-averse) newsvendor model, which is well supported by a recent axiomatic frame-
work (Cerreia-Vioglio et al. 2023, Hansen and Sargent 2023) that unifies behavioral decision criteria

3 The phenomenon of distribution shift, in statistical learning, also refers to situations where the training and testing
samples are governed by different distributions (see, e.g., Quinonero-Candela et al. 2008).
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Figure 2 Left: The true demand distribution F resides in the ambiguity set A, and the newsvendor faces only ambi-
guity. Right: The true demand distribution resides out of the ambiguity set, and hence, the newsvendor

faces both ambiguity and misspecification.

that are averse to either ambiguity or misspecification. In particular, we distinguish the ambiguity
under which the newsvendor does not differentiate demand distributions of common distributional
characteristics (e.g., mean and variance) and misspecification under which such characteristics
might be misspecified (due to, e.g., estimation error and/or distribution shift as discussed before).
The newsvendor hedges against ambiguity and misspecification by maximizing the worst-case
expected profit regularized by a distribution’s distance to an ambiguity set of distributions with
some specified characteristics. We investigate—from decision-criterion, operational, and statistical
perspectives—how misspecification aversion may affect the newsvendor’s decision and what is the

rationale behind the misspecification aversion.
1.1. Summary of Main Contributions

Introducing misspecification upon ambiguity. We investigate the fundamental newsvendor
problem under a structured decision-under-uncertainty framework that distinguishes the ambiguity
and misspecification. We focus on the mean-variance information for characterizing the ambigu-
ity and optimal-transport cost for quantifying the misspecification, respectively, and investigate
the rationale behind the misspecification aversion that differentiates from the ambiguity aversion
of the seminal Scarf framework. We extend our modeling on the ambiguity of demand distri-
bution via bounding its statistical distance to a reference distribution, misspecification aversion
upon ambiguity-aversion is then equivalent to a stronger misspecification aversion to a nominal
ambiguity-neutral model under the reference distribution (Section 6.2). We also extend to consider
other statistical distances (specifically, ¢-divergence) to measure the misspecification (Section 6.3).
These, together with misspecification aversion to the mean-variance ambiguity set, achieve a com-

prehensive inspection of newsvendor under ambiguity and misspecification.

Decision-criterion interpretations. We investigate and interpret the decision criterion of mis-
specification aversion by leveraging a decision-analysis vehicle of distributional transform (Liu et al.
2021). We show that the decision criterion of the newsvendor under ambiguity and misspecification
is essentially a worst-case transformed expected profit with each distribution within the ambigu-

ity set being transformed—via a transform function determined by the index of misspecification
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aversion and the newsvendor’s profit function—to another one possibly beyond the ambiguity set
(Theorem 1). In particular, the misspecification aversion, along the distributional transform, is
fully encoded in the transform function identified. In addition, the decision criterion can also be
interpreted as a worst-case convez risk measure generated by the distributional transform and the
original criterion as expected profit. In particular, a stronger aversion to misspecification leads to

a higher level of “risk” in view of the generated risk measure.

Analytical optimal solutions. We analytically derive the optimal order quantity of newsvendor
under ambiguity and misspecification (Theorem 2), which generalizes that of the seminal Scarf
model under ambiguity aversion alone. The analytical solution enables us to analyze the optimal
order quantity’s sensitivity to cost structure (i.e., price and cost) and distributional characteristics
(i.e., mean and variance) to understand the impact and rationale of misspecification aversion. In
particular, while it is always optimal to order more as price increases under ambiguity aversion, it
turns out that ordering less instead can be optimal as the price increases under misspecification
aversion, ceteris paribus (Proposition 3). Likewise, in the case of high-profit margin, while it is opti-
mal to order more as variance increases under ambiguity aversion, ordering less can be optimal as
the variance increases under misspecification aversion, ceteris paribus (Proposition 4). These obser-
vations reveal that ambiguity and misspecification, as different layers of distributional uncertainty,
can result in distinct operational consequences, and therefore should be distinguished in the model-
ing. Furthermore, we extend to derive the analytical optimal order quantities of multiple products
under a sum-of-variance constraint, which unifies the ambiguity-averse and misspecification-averse

single-product model, ambiguity-averse multi-product model, and the Scarf model (Theorem 5).

Performance guarantee. We establish the finite-sample performance guarantee of the optimal
solution that decouples the mixing effect of estimation error and distribution shift in the misspec-
ification statistically (Theorem 3). In particular, the estimation error is related to the distance
between the data-generating distribution and the estimated mean-variance ambiguity set, and it
diminishes as the sample size approaches infinity; while the distribution shift, captured by the
distance between the data-generating distribution and the out-of-sample distribution, is indepen-
dent of the sample size. This theoretically justifies the rationale of incorporating misspecification
aversion in a non-stationary environment, which is also well demonstrated in our experiments with

real-world retailing data.

1.2. Related Works

Our work is related to the following streams of literature.

Newsvendor with moment condition. Since the pioneering work of Scarf (1958), various

studies have employed the moment condition to specify the ambiguity-averse newsvendor model
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with limited demand information. For instance, building on the results of Scarf (1958), Gallego and
Moon (1993) extend to consider a multi-product newsvendor problem based on marginal mean-
and-variance information under a budget constraint. Natarajan et al. (2011) generalize the Scarf
model by allowing the mean and variance to be uncertain and to vary within some predetermined
intervals. This formulation turns out to be equivalent to the Scarf model characterized by the
lower bound of mean and the upper bound of variance. Zhu et al. (2013) focus on minimizing the
worst-case regret under known mean and variance of the random demand. In addition to ambiguity
aversion, Han et al. (2014) incorporate risk aversion into the newsvendor problem, where the risk
is captured by the standard deviation of the newsvendor’s profit. Given the mean and variance
of the demand, they develop a closed-form solution for the risk-averse (and ambiguity-averse)
newsvendor. Apart from mean and variance, other moment information has also been considered
in ambiguity-averse newsvendor problems. We refer to Perakis and Roels (2008) for structural
information such as median, unimodality, and symmetry, to Ardestani-Jaafari and Delage (2016)
for first-order partial moments, to Natarajan et al. (2018) for asymmetry based on second-order
partitioned statistics, and to Das et al. (2021) for the ¢-th (£ > 1) moment that can capture heavy-
tailed demand distributions. Govindarajan et al. (2021) shift the focus to the inventory pooling
problem where the ambiguity set is specified by mean and covariance (see also Hanasusanto et al.

2015) and characterize the closed-form solution of the two-location model.

Newsvendor with statistical distance. Another stream of the ambiguity-averse newsvendor
model is based on ambiguity sets specified through the closeness to a reference distribution in terms
of a certain statistical distance. For instance, Rahimian et al. (2019) delve into the total variation
distance and obtain an insightful closed-form solution. Based on the Wasserstein distance, Chen
and Xie (2021) adopt the minimax regret decision criterion in the presence of both demand and
yield randomness, and they show that the optimal order quantity can be determined via an efficient
golden section search. Fu et al. (2021) and Zhang et al. (2023) further leverage side information from
explanatory features, and derive a closed-form solution based on the JW discrepancy measure and
an optimal analytical ordering policy based on the Wasserstein distance, respectively. In this work,
we also consider the possibility that the misspecification may arise from such ambiguity-averse

newsvendor models with statistical distance (Theorem 6).

Model misspecification. Statisticians and econometricians have long grappled with the chal-
lenge of addressing uncertainty in decision-making, which is categorized as risk, ambiguity, and
misspecification (see, e.g., Hansen 2014, Hansen and Sargent 2022). Several noteworthy contribu-
tions have been made, which, from many angles, shed light on the interplay between the different

layers of uncertainty. From the empirical perspective, Aydogan et al. (2023) provide experimental
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Table 1 Position of our work in the related literature of newsvendor under demand-distribution uncertainty.

evidence for the role of model misspecification in decision-making under uncertainty. Their work
establishes a compelling case for recognizing a distinct behavioral impact among risk, ambigu-
ity, and misspecification, illuminating the nuanced facets of decision theory. From the theoretical
perspective, Cerreia-Vioglio et al. (2023) propose an innovative axiomatic framework that uni-
fies the behavioral decision criteria on the aversion to ambiguity and/or misspecification. From
the operational perspective, De Meyer et al. (2002) delineate four types of uncertainty in project
management, namely variation, foreseen uncertainty, unforeseen uncertainty, and chaos. The latter
two align closely with the notions of ambiguity and misspecification, respectively. There are also
nascent works investigating the issue of model misspecification in revenue management, such as
misspecified demand function (Nambiar et al. 2019) and misspecified choice model (Chen et al.
2023). Rooted in the domain of optimization under uncertainty, the studies of Delage and Ye (2010)
and Wiesemann et al. (2014) allow for variation in the moment information or the probabilities
of specific events, while the works of Ben-Tal et al. (2017), Liu et al. (2023), and Long et al.
(2023) propose paradigms that mitigate the violation of uncertainty-involved constraints when the
distribution of uncertainty does not reside in the pre-specified ambiguity set.

Table 1 positions our work in the related literature of newsvendor under demand-distribution
uncertainty. Our work contributes to the extant literature by introducing misspecification upon
ambiguity in the fundamental newsvendor problem via a structured decision-under-uncertainty

framework. We delve into the decision criterion of misspecification aversion and reveal its insightful
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distributional-transform and convex-risk-measure interpretations. We further derive the closed-
form optimal order quantity with implications from sensitivity analysis and establish the finite-
sample performance guarantee. We also extend our framework to multiple products, distributional

characteristics specified via optimal transport, and misspecification measured by ¢-divergence.

1.3. Notation

We denote by P (resp., M) the set of probability measures (resp., non-negative measures) sup-
ported on R, and P, the set of probability measures supported on R. We use v ~ F' to signify a
random variable © that follows the probability distribution with a cumulative probability distribu-
tion (CDF) F, under which the expectation is Ep[-]. The Dirac distribution at v € R is denoted by

d,. We adopt the convention that 1/0 = co, and refer to “decreasing/increasing” in the weak sense.

2. Model
The newsvendor decides the order quantity before demand realization and tries to maximize her
expected profit. Given the unit price p, unit cost ¢ (¢ < p), and an order quantity ¢, the profit

under the materialized demand v amounts to

7(q,v) =p-min{q,v} — cg =p-min{q,v} — (1 — K)pg,

where we denote the profit margin by x = "¢ (giving ¢ = (1 — x)p), which will be an important
parameter for our analysis. Facing stochastic demand, the newsvendor must navigate optimizing
her decision-making process to balance the trade-off between lost sales (incurred when v > ¢) and
excess inventory (incurred when v < ¢). When the precise demand distribution G is fully known,

the newsvendor maximizes her expected profit by solving the problem

max Eg[r(g,0)]. (NOMINAL)
q>0

The optimal order quantity ¢ is characterized by the classic critical fractile ¢f = G™'(k). If G
is an elliptical distribution with mean u, standard deviation o, and some density generator £(-),
then ¢ = p+ 0 -Z7(k), where E(u) = [*_£(v?)dv." Such a formula holds for many other classes
of distributions, including the uniform distributions and the exponential distributions. It is worth
mentioning that within each class above, the optimal order quantity is also uniquely determined
by only the mean and variance of the demand distribution.

In practice, full information on the demand distribution is often not accessible. To tackle the
challenge of partial distributional information, significant advancements have been made in pre-

scribing an ambiguity-averse solution that remains robust against all distributions specified by

4In practice, some necessary assumptions might be needed to ensure non-negativity of ¢& (Snyder and Shen 2019).
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some common distributional characteristics. The seminal work of Scarf (1958) specifies only the

mean and variance of the demand distribution and solves

max min Ec[n(g,0)] (AMBIGUITY)

with a mean-variance ambiguity set
A={G e P |Egft] = p, Eali?] = u* +0%}.

The AMBIGUITY model admits an analytical solution®—for the reason that will become clear
subsequently, we emphasize it with a subscript ‘co’—as follows:

2

o

. pu+of(l—k) /@Zm
qoo = 0.2 (1)

0 K<,

p?+o?

where the function f(-) takes the form
1-2
f(x)zix VO<z<l1. (2)
2\/x(1—x)

As illustrated in Scarf (1958), the optimal order quantity ¢%, of AMBIGUITY is comparatively
close to the optimal order quantity of NOMINAL under a normal approximation of the Poisson
distribution for a moderate range of profit margins. In effect, in many commonly used distributions
(e.g., elliptical, uniform, and exponential) of a nominal G as mentioned above, the optimal order
quantities ¢, and ¢ share important sensitivity features (to be discussed in Section 4.2). In
addition, the AMBIGUITY model can also cover the situation where the mean and variance are

themselves uncertain and reside in some estimated intervals, as remarked below.

REMARK 1 (GENERALITY OF AMBIGUITY). Consider an ambiguity set parameterized by

bounds on the uncertain mean and variance:
V={GeP|Egt] =p, E¢[t’] =p*>+ 0> for some pé€ [y, i) and o” € [c?,57]}.
By corollary 5.1 of Natarajan et al. (2011), it holds that
. 1 . _ . _ 1 o1 2 =2
max min Eq[n(q,0)] = max min Eq¢[m(q,0)] with A={GeP|Eq[0]=p, Eq[vo*]=p*+5"}.

The right-hand side equivalence is indifferent to AMBIGUITY with mean p and variance 5°.

5 Note that when x = ufijﬂ’ the optimal order quantity g5, can take any value in [0, u+ o f(1 — K)].
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An underlying assumption of AMBIGUITY is that the true distribution Fi,,. falls in the specified
ambiguity set A. However, the ambiguity set A is constructed using the mean and variance esti-
mates for those of the true Fi,,., and is, therefore, may be misspecified, that is, Fi,.. ¢ .A (see also
the empirical evidence in Figure 1). This leads to misspecification—an issue we address next.

To capture misspecification formally, for a demand distribution F' € P, we measure its closeness
to the ambiguity set A by

d(F,A) = glelg d(F,QG)

with d(F,G) being the optimal-transport cost (Villani 2009) between two distributions F' and G
with quadratic cost function |-|? defined as

d(F,G)= min / lu — v 2T (u, v), 3)
]R+ XR+

TeW(F,G)

where W(F,G) is the set of joint probability distributions on R, x R, with marginals F' and G.
The quantity /d(F,G) is also known as the type-2 Wasserstein distance between F and G. Note
that d(F, A) > 0 if and only if F' ¢ A. In the main content, we focus on the optimal-transport cost
in characterizing misspecification, for the sake of tractability and statistical convenience (see more
details in Section 4 and Section 5). Following the spirit of Cerreia-Vioglio et al. (2023),° given the
ambiguity set A, we incorporate misspecification into the newsvendor’s decision criterion so that
a misspecification-averse (and ambiguity-averse) newsvendor solves

IT}, = max min {EF [7(q,0)] +a-d(F, A)} (MISSPECIFICATION)

g>0 FeP

for some « > 0 that represents the index of misspecification aversion: the lower the index, the
stronger the aversion to misspecification. Intuitively speaking, a larger value of « puts a larger
penalty on deviation from the ambiguity set A (as measured by d(F,.A)) and corresponds to higher
confidence in A (or equivalently, the AMBIGUITY model). On the one end, when o — oo, misspec-
ification aversion is absent (see section 4.1 in Cerreia-Vioglio et al. 2023), and MISSPECIFICATION
reduces to AMBIGUITY as the newsvendor is absolutely confident with A. On the other end, when
«a — 0, misspecification aversion is strongest, and MISSPECIFICATION reduces to the robust model

e i Brlrte. wl =gy i m(ew),

wherein the newsvendor is so unconfident that she disregards the distributional characteristics

specified in A.

6 When considering misspecification aversion, Cerreia-Vioglio et al. (2023) focus on ¢-divergence.
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It is worth noting that the MISSPECIFICATION problem can also be regarded as the dual coun-
terpart of an alternate formulation of the newsvendor model under misspecification as follows:

in E i 4
max  min_ rlm(q,@)] (4)

for some € > 0. In particular, when € =0, problem (4) reduces to AMBICGUITY; and when & > 0, the
optimal solution to problem (4) can be constructed from that of Mi1SSPECIFICATION (Lemma EC.2
in Section EC.1). In other words, the decision of MISSPECIFICATION essentially hedges against
some worst-case distribution that can stay outside the ambiguity set A characterized by mean
and variance information. This makes MISSPECIFICATION distinct from AmBIGUITY (with the
underlying worst-case distribution within A) in many aspects, which will be further explored in
the forthcoming sections. In Section 6, we extend MISSPECIFICATION to involve multiple products,
distance-based ambiguity set defined via optimal transport, and misspecification measured by ¢-

divergence.

3. Decision Criterion via Distributional Transform
To understand the decision criterion of misspecification aversion in our newsvendor context,” we
investigate the objective function of MISSPECIFICATION from a perspective of distributional trans-
form. We show that the objective function essentially transforms distributions in A—via a trans-
form function determined by the index « of misspecification aversion and the newsvendor’s profit
function—to new ones that possibly violate the mean and variance constraints specified by A.
Exploring the definition of d(F,.A) and interchanging the minimization over F' and G, we can
represent equivalently the MISSPECIFICATION problem as follows:

max min min {EF[W(q,U)] +a-d(F, G)}-

Here, the inner minimization features the potential misspecification of a fixed distribution G € A,
which is then robustified over the specified ambiguity set .4 via the outer minimization. Recall that
a distributional transform T,[-] : P +— Py maps distributions in P to P, via a transform function
¢ that can be defined in multiple ways per as necessary (Liu et al. 2021). We can then represent
the above inner minimization term through the notion of distributional transform, leading to the

following result that plays a key role in characterizing the decision criterion of MISSPECIFICATION.

THEOREM 1 (DISTRIBUTIONAL TRANSFORM). Given o >0 and q >0, it holds that

min {Ex [r(q,@)] + - d(F, A) } = min / ;) dT,,, [G](v),

Fep R,

7 Cerreia-Vioglio et al. (2023) establish the axiomatic foundation of misspecification aversion based on the represen-
tation of behavioral preferences in decision theory, which, however, does not offer many operational insights.
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Transformed worst-case distribution
Worst-case distribution G, o ‘7;, [G;]

A Distributional transform

Figure 3 The decision criterion of MISSPECIFICATION transforms the worst-case distribution G}, in the ambiguity

set A into the transformed worst-case distribution Ty, [G] that can be outside of A.

where T, [G](v) =Gop ' (v) Vv eR,® and T, [] is a distributional transform of G € A with an
increasing and continuous transform function p, : Ry — R, defined as follows.

(i) If a < I, then

a4
Va(v)=— v
p
(it) If o> L, then
a9 p
— v U<%
D
‘Pa(v):
4o ~ 2«

By Theorem 1, the decision criterion of MISSPECIFICATION serves as an expectation under a
transformed worst-case distribution (Figure 3), which establishes the equivalence between Mis-

SPECIFICATION and the following problem

max 21613 Er, a7 (q,7)]. (TRANSFORM)

For the remainder of this section, we may use TRANSFORM and MISSPECIFICATION interchangeably.
Recall that AMBIGUITY evaluates the performance of an order quantity ¢ via the decision criterion

min Eq[m(q,0)]-

The above equivalence reveals that the key difference between AMBIGUITY and MISSPECIFICATION
lies in the transform function ¢, applied to the probability distributions in the mean-variance
ambiguity set A. In particular, for any physical’ probability distribution G € A, ¢, transforms it to
a subjective probability distribution T}, [G] that can be outside A, so that the resulting transformed
expectation Er,_(q[-] reflects the newsvendor’s aversion to misspecification. On the one hand, for
a small value of a such that o < 4%, the transform function ¢, compresses (resp., amplifies) low
(resp., high) demand realizations of G,'"” and a smaller « results in more demand realizations being

compressed, see the cases of ay, as on the left panel of Figure 4. On the other hand, for a large value

8 The transformed distribution T, [G] is also the CDF of ¢, (%) with @ ~ G.
9 All distributions in A sharing the same physically observable mean-variance information are treated indifferently.

" When o < 1> Too [G](v) = G(/£) for every G € A. Since G(v) is increasing in v, it can be seen that T, [G](v) >
G(v) when v < 2 and T, [G](v) < G(v) when v > 2.
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Figure 4  Left: Transform function ¢ (v). Right: CDF of a truncated normal distribution G and the transformed
distribution Ty, [G]. On both panels, a1 < az < 4% < as. For the right panel, G € A is a normal distribu-
tion truncated to Ry with mean p and standard deviation o. Here, p1 and o1 (resp., pus and o3) are the

mean and standard deviation of the transformed distribution T, [G] (resp., Ty, [G]).

of a such that o > 4%, ¢, compresses all demand realizations of G;'' see the case of as on the left
panel of Figure 4. In this case, misspecification aversion compresses all probability distributions in
A, and a smaller « also leads to a stronger compression. Importantly, due to the transform function
¢4, the mean or variance of the transformed distribution T, [G] can be different from that of the
original distribution G in the ambiguity set A, namely T, [G] ¢ A; see the right panel of Figure 4
for a visualization. As o — oo, the transform function becomes ¢, (v) = v, implying T, [G] = G and
that MISSPECIFICATION reduces to AMBIGUITY. That is, the index « of misspecification aversion,
or equivalently, the newsvendor’s aversion against misspecification of A, is fully encoded in the
transform function ¢, of TRANSFORM.

Interestingly, we emphasize that given a and an order quantity ¢, the distributional transform
T,, is determined by the price p (see the transform function ¢, derived in Theorem 1), leading
to the transformed worst-case distribution T,,,[G}] with G}, € argmingc 4 Er,_(¢)[7(q,7)] being
dependent on the price (see Proposition EC.1 in Section EC.3). In contrast, we recall that the worst-
case distribution implied by AMBIGUITY, i.e., G5, € argming. 4 Eg[n(g,?)], is however independent
of the cost structure.'” In other words, the price-independent worst-case distribution inside the
ambiguity set A in the decision criterion of AMBIGUITY now becomes a price-dependent transformed
worst-case distribution outside of A in the decision criterion of MISSPECIFICATION. We emphasize

"' When a > £ o Too[G(v) = G({/Ev) > G(v) if v < £ and Ty, [G](v) = G(v+ £ ) = G(v) otherwise. Hence, for
every G € A, We always have T, [G](v) > G(v) for all v>0.

2 2
12 Given an order quantity ¢, it can be shown that G%, = (W) do + ( 2+02) 8,2.,2 when ¢ < %, and

m
Gho=(G+ %) 60w+ (5 — L) 644w otherwise, where w = /(g — p1)2 4 02, which is independent of p.

2w
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that such price-dependency effect indeed leads to operational consequences of MISSPECIFICATION
being distinct from that of AMBIGUITY, which will be further explored in Section 4.

Finally, we also point out that the decision criterion of MISSPECIFICATION can be interpreted
as a worst-case convexr risk measure generated by the distributional transform and the original
criterion as expected profit.'? In effect, given a >0 and G € A, if we define

P (F) = —min{Ep[7] +a-d(F,G)}, (5)

F

then according to the robust representation of convex risk measures (Follmer and Schied 2016),

we can formalize pS being a convex risk measure on the space of random profits.
PROPOSITION 1. Given a >0 and G € A, pS is a convex risk measure.

Note that given ¢ >0, pS (7(q,0)) > p&, (7(q,?)) for any oy < a,. The distributional transforms
(T, )a>0 generate a collection of convex risk measures (pS),>0, where the parameter a—the index
of misspecification aversion—now controls the level of risk measured by pS. A smaller « (i.e., a
stronger misspecification aversion) in ¢, that transforms the distribution G leads to a higher level
of risk. Using the risk-measure representation (5), MISSPECIFICATION is then equivalent to

. G ~
min max o (m(¢, 7)) (RIsK)

that optimizes the worst-case convex risk measure generated by the distributional transform 7,_,
providing another interpretation for the decision criterion of M1SSPECIFICATION. Therefore, choos-
ing d(-,-) as optimal-transport cost not only enriches the risk-measure representations of the deci-
sion criterion of misspecification aversion, but also is important to the computational tractability

for our newsvendor problem (see Sections 4 and 6.1)."

4. Optimal Solution and Sensitivity Analysis

In this section, we first derive the optimal order quantity of MISSPECIFICATION in closed form. We
then investigate the impact of misspecification aversion via the optimal order quantity’s sensitivity
to the cost-structure information and distributional information, revealing important operational

implications of MISSPECIFICATION distinct from AMBIGUITY.

13 As Liu et al. (2021) have pointed out, applying distributional transform can generate new risk measures from a
risk measure (e.g., expectation).

4 The connection between MISSPECIFICATION and RISK is consistent with the extant literature that chiefly measures
misspecification by ¢-divergence. Specifically, Cerreia-Vioglio et al. (2023) show that choosing d(,-) as ¢-divergence
would result in some well-known convex risk measures. For example, choosing d(-,-) as Kullback—Leibler divergence
(resp., Gini concentration index) results in CARA risk measure (resp., mean-variance risk measure). However, they
are both hard to optimize (Chen and Sim 2023) and even computationally intractable in the newsvendor problem.
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4.1. Analytical Solution

To proceed, we recall that MISSPECIFICATION can be reformulated as

I?gg( glelg {Er[r(q,u)] +a-d(F,A)} = r(rzlgg( glelg Er,,c) [7(q,0)]

= max min Eg[m(q, (7)),
where the second equality follows from the definition of distributional transform T, as identified
in Theorem 1. Therefore, one can tackle MISSPECIFICATION by adapting the primal-dual machinery
for solving a maximin problem similar to AMBIGUITY but with a new “profit” function ¥(a, q,v) =

7(q, ¢a(v)). Specifically, given ¢ > 0, the inner worst-case expectation can be written as

min /R RCRLED

G€M+

s.t. / vdG(v) =p o Sg
Ry

/v2dG(v):,u2+02 Cee Ty
Ry

/R dG(v) =1 .

With s, 7., and t, being dual variables that are respectively associated with the mean, variance,

and support of the ambiguity set A, the equivalent dual reformulation of problem (6) is

max f18q — (> +0?)ry —ta

SasTasta
St vsq — 0y —te < ¥(a,q,v) Yv>0 (7)
sa €ER, r, R, t, €R.

The key to the primal-dual machinery is to construct a pair of primal and dual solutions that share
identical objective values. In particular, the primal solution is a worst-case distribution constructed
by identifying tangent points between function s,v — r,v* —t, and the function ¥(q,q,v) in the
dual problem (7). For MISSPECIFICATION, however, the new “profit” function W—mneither convex
nor concave in v—is less structured than the concave piecewise affine function m of AMBIGUITY,
making the primal-dual procedure more involved to analyze. Fortunately, leveraging the closed
form of ¥(a,q,v) =7(q,pa(v)) given by Theorem 1, we can derive an analytical reformulation of

the objective function in MISSPECIFICATION.
PROPOSITION 2 (WORST-CASE TRANSFORMED EXPECTATION). Given a>0 and ¢ >0,

2
P q+,uf£f qf/Hrﬁ +0?) —cq if g€ Q
2 da da

min Er_ (¢)[7(q,9)] = (8)

GeA 2
a(pq +u? o’ — \/<pq+u2+(;2> —4,u2pq) —cq otherwise,
o o o

2

where Q={q€R: [¢= L, 2n—2)g=p*+0° — L4}
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The analytical form of the worst-case transformed expectation is non-trivial and generalizes the
worst-case expected cost of AMBIGUITY as a — 00.'” Equipped with the analytical form, we can

then derive the optimal solution of MISSPECIFICATION as follows.

THEOREM 2 (OPTIMAL SOLUTION). Given a >0, the optimal order quantity g% of MISSPECI-

FICATION 1§

"

P g b
+of(l—k)—-— R g @2
1 f( ) Aoy 12+ o2 2u—0o+/(1—K)/K)
2
% 2 2 a 4 7
qn = -0 +2uof(l—k))-— K=>—F-,a< ’
(,u o f( )) D 2+ o2 2(p—o\/(1—K)/k) )
2
o
0 /ﬁ)<ma

where f(-) is defined in (2). The optimal order quantity q¥, is increasing in c.

. 2
Focusing on the non-degenerate case that x > #, for0<a; <

p < h
Y ramy ap, we have
* « * p *
Go, = (12— 0"+ 200 f(1 - K)) - ?1 <@, =p+of(l—r) == <ptof(l—r) =
2
see left panel of Figure 5. This implies that the optimal order quantity ¢% of MISSPECIFICATION is

no larger than that of AMBIGUITY (i.e., ¢/, )—an intuitive result due to the additional aversion to

misspecification—and ¢ — ¢%, as a — co. It is also notable that the optimal order quantity ¢ is

p
2p—ar/(1=r)/K)’
*

¢ is a product of p? —o? +2ucf(1 — k) and «/p that are purely determined by the mean and

affected by misspecification aversion and ambiguity aversion separately. When a <

variance information specified in A and purely determined by misspecification, respectively. When
>——bB______  ¢* is obtained b o f(1 — k) that is exactly the optimal order quantity ¢*
25 Gm),qa y ptof(l—r) y P q N

of AMBIGUITY minus % that is purely determined by misspecification.

4.2. Sensitivity and its Implications

We next look at the optimal order quantity ¢%’s sensitivity to the cost-structure information (i.e.,
¢ and p) and distributional information (i.e., p and o?). Since it is straightforward that ¢ is
decreasing (resp., increasing) in ¢ (resp., ) being consistent with that of AMBIGUITY, we focus on
its sensitivity to price p and variance o2, which exhibits a different pattern from that of AMBIGUITY.
In particular, we also focus on the non-degenerate case in Theorem 2 that x> ;ﬂ(fijﬂ In this case,
recall from (1) and (2) that the optimal order quantity ¢’ of AMBIGUITY is

) N 2k—1 +0< [ K /1—/1) (10)
— o——— = — — .
oo =1 2/Kk(l—k) a 2 1—-k K

15 As a — 00, Q becomes {q € R, | g > £t *" } and (8) recovers the worst-case expected cost of AMBIGUITY such that
minge a4 E¢m(q,0)] = %f;@ —cqifg>*t ‘L" and mingea Eg[n(q,9)] = 5(¢+ p — /(g — p)? + 02) — cq otherwise.
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Figure 5  Optimal order quantity as a function of « (left), p (middle) and o (right), respectively.

Notes. The optimal order quantity of NOMINAL is obtained under a normal distribution truncated to R4+ with mean
1 and standard deviation o. For all three panels, we set ¢ =3 and p=4. On the left panel, p =10 and o = 2. On the
middle panel, o = 2.5 and a =4, and we identify p, = 22.5. On the right panel, p =10 and « = 1.5, for which x =0.7

and the non-degenerate region is o € [0, W/ ﬁ] = [0,4\/2}7 and we identify o, = \/%.

By (10), g%, of AMBIGUITY is always increasing in p, so is ¢, = G~ '(k) of NOMINAL under any dis-
tribution G, by noting that the profit margin x = % is increasing in p. However, the monotonicity

of ¢* to p can reverse that of ¢% (¢¢) as shown below.

2 2
PROPOSITION 3 (SENSITIVITY TO PRICE). There exists some p, > max{“u%c, 2ap} such

that ¢ is decreasing in p € (py,0).

Notably, Proposition 3 points out that when price p is sufficiently large, the optimal order quan-
tity & of MISSPECIFICATION, in stark contrast to g%, of AMBIGUITY, is decreasing in p; see the
middle panel of Figure 5. We emphasize that such distinct sensitivity is rooted from the induced
price dependency of the transformed worst-case demand distribution T, [G}] in MISSPECIFICA-
TION, which stochastically reduces in the price p (see transform function ¢, in Theorem 1), while
the worst-case demand distribution of AMBIGUITY is independent of the price. As the price becomes
sufficiently large, the effect of reduced “demand” (7, [G%]) outweighs that of the increased profit
margin, leading to the ¢’ of MISSPECIFICATION being decreased.

Likewise, by (10), the optimal order quantity g% of AMBIGUITY is increasing (resp., decreasing)
2

[0, 1A /ﬁ] Such monotonicity also holds for the optimal order quantity ¢ = G~!(x) of NOMINAL

in ¢ when k> 1 (resp., when & < 3), under the non-degenerate condition x > i.e., 0€
under many commonly used distributions (e.g., elliptical, uniform, and exponential). However,
the situation becomes different when considering the misspecification aversion: the optimal order
quantity g% of MISSPECIFICATION, can be decreasing in ¢ when x > % in the situation of non-
degeneracy; see the right panel of Figure 5. The different sensitivity pattern also uncovers an

advantage of MISSPECIFICATION in the solution’s smoothness to parameters, by noting that the
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solution to AMBIGUITY is overly sensitive to the parameter o as it can jump as o changes slightly;

see, e.g., Embrechts et al. (2022), for various smoothness issues in optimizing risk measures.

PROPOSITION 4 (SENSITIVITY TO VARIANCE). Given k > %, there exists some o, < iy /T

such that g, is decreasing in o € [Ua,u £ ]

1-k

To summarize, sharing the mean and variance characteristics, the optimal order quantity
of AMBIGUITY—hedging against the distributional uncertainty within the ambiguity set A—may
exhibit an identical sensitivity pattern to the cost-structure parameters with that of NOMINAL,
and, in the situation of non-degeneracy, to the distributional characteristics with that of NOMINAL
under many common distributions inside A.'° The optimal order quantity of MISSPECIFICATION,
however, hedges against another layer of distributional uncertainty beyond the ambiguity set A,
which therefore can break the sensitivity pattern of ordering characterized by the mean and vari-
ance information. This suggests that the ambiguity and misspecification, as different layers of
distributional uncertainty, could result in distinct operational consequences, and therefore should

be distinguished in the modeling.

5. Performance Guarantee

In this section, we investigate the out-of-sample performance guarantee of the optimal order quan-
tity ¢ of MISSPECIFICATION. As we have mentioned, in many practical situations, the newsvendor
has only access to incomplete knowledge on demand, and the misspecification can arise from a
mixing effect of estimation error (e.g., due to data limitation) and distribution shift (e.g., due to
non-stationarity). We consider a data-driven setting where the mean-variance ambiguity set A is
estimated as Ay by using demand samples drawn from a data-generating distribution D with mean

1 and standard deviation o.

ASSUMPTION 1. Assume that 01, ...,0x are random samples independently drawn from the data-

generating distribution D, and the mean-variance ambiguity set
Ay ={G € P |E¢[0] = f1, Eq[t?] = i + 62}

1 constructed from sample mean and variance:

16Tt can be readily checked that both solutions of AMBIGUITY and NOMINAL share the same monotonicity to the cost
c and to the mean value p.
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We consider the possibility that the out-of-sample distribution F' can be different from D—a
phenomenon of distribution shift. In particular, we look at the finite-sample performance guar-
antee leveraging a statistical approach that interprets insightfully the performance guarantee of
MISSPECIFICATION by decoupling the effects of estimation error and distribution shift.

Our analysis relies on the concentration of the estimated mean-variance ambiguity set Ay, for
which we need to investigate the optimal-transport cost d(D,Ay) that is closely related to the
Gelbrich distance (Gelbrich 1990). For any G € Ay, the Gelbrich distance between G and the data-
generating D is \/(fi — u)2 + (6 — 0)2, and d(D,G) > (i — p)? + (6 — 0)? with the inequality being

tight whenever G is an affine transformation of D (as shown in Gelbrich 1990, Nguyen et al. 2021).
That is to say, if Ay is supported on the whole space R, then d(D, Ayx) = (i —u)*+ (6 — o)?>—the
optimal-transport cost amounts to the Gelbrich distance squared. This is not necessarily true in
our newsvendor context as the demand is non-negative and Ay should be supported on R,. Quite
notably, we show that the optimal-transport cost still coincides with the Gelbrich distance squared
if g > £ and otherwise, is bounded from above by the Gelbrich distance squared plus a term related

to the true and estimated mean and variance—a result may be of independent interest.

LEMMA 1. Under Assumption 1, the optimal-transport cost of moving the data-generating dis-
tribution D to the mean-variance ambiguity set Ay can be characterized as follows.

(i) I £ > &, then d(D, Ay) = (i~ p)?* + (6 - 0)?.
(ii) If% < L, then for sufficiently large N, it holds that

(i—p)*+ (-0 <dD,AN) < (i—p)* + (6 —0)*+ S

We also assume the following regularity condition on the data-generating distribution D.

ASSUMPTION 2. The data-generating distribution D is sub-Gaussian with a variance proxy v?,
i.e., Eplexp(z(0— pn))] < exp(””i”2 ), Vz eR.

The sub-Gaussianity, as a common type of light-tailed characteristics,'” captures a wide range of
probability distributions, including, among many others, Gaussian distribution, Bernoulli distribu-
tion, uniform distribution on a convex set, and any bounded distributions (Vershynin 2010). With

the characterization of d(D,Ay) in Lemma 1, we derive the following concentration inequality.

PROPOSITION 5 (CONCENTRATION OF MEAN-VARIANCE AMBIGUITY SET). Under Assump-
tions 1 and 2, for a given confidence level n € (0,1], it holds for sufficiently large N that

(c1 + c2log(1/n))?
VN

where ¢1,c3 >0 are constants that only depend on p, o, and v.

17 The light-tailed assumption is typically necessary for establishing the large-deviation properties for statistics of
the sample mean and sample variance (Catoni 2012). As for the heavy-tailed distributions, more complex estimation
procedures (for the mean and variance) are needed to achieve acceptable convergence rates (Cai et al. 2010).
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Leveraging the concentration of ambiguity set Ay and the closed-form expression of the worst-
case transformed expectation (Proposition 2), we can then establish a finite-sample performance
guarantee of the optimal solution to MISSPECIFICATION.

THEOREM 3 (FINITE-SAMPLE PERFORMANCE GUARANTEE). Under Assumptions 1 and 2, for

2
a given confidence level n € (0,1], let ex = % with ¢1,co >0 being constants that only
depend on p, o, and v, and
2
1 —c 1—-k
L _pe=c) €N+d(F,D)</<a<,a—é} )

ay = 2 8N+d(F,D) K (11)

1_ 2
0 5N+d(F,D)zn<ﬂ—&,/ H“) .

Consider the optimal solution ¢, and the optimal value II}, of MISSPECIFICATION with a = ay
and A= Ay. For sufficiently large N, it holds that

Pon |Brlr(az @) ( Iy = 5yplo—cex+po—0dR D)) | 211,

~
in-sample effect of effect of
optimal value estimation error distribution shift

where DV is the N-fold product of D.

The guarantee derived in Theorem 3 is the in-sample optimal value of MISSPECIFICATION sub-
tracting the out-of-sample misspecification effect described by the estimation error in mean and
variance and the distribution shift. For the estimation error, it is related to the upper bound 5 on
the distance d(D, Ay) between the data-generating distribution and the estimated mean-variance
ambiguity set, which diminishes as N — oco. For the distribution shift captured by d(F, D), it is
independent of the sample size N. A key statistical implication is that as long as the out-of-sample

distribution F' shifts from the data-generating distribution D, there is always a constant amount

of loss 1/p(p — c)d(F, D) in terms of the performance guarantee, even as N — 0o (gy — 0).
Theorem 3 also suggests that the calibration for the index ay of misspecification aversion is
affected by both the estimation error and the distribution shift. According to (11), when non-
zero, ayy is increasing in the sample size N (i.e., decreasing in £y) while decreasing in extent of
distribution shift d(F, D). This implies that at the same confidence level, the newsvendor needs
to be more misspecification averse in either case of a smaller amount of data or a more signif-
icant distribution shift, to guarantee the performance. Moreover, in the presence of distribution

shift (d(F,D) > 0), even when the estimation error vanishes with the sufficient data (i.e., ey — 0

as N —00), ay — 3 ZE’;‘;; < 00, implying that MISSPECIFICATION (ay < o) shall still outper-
form AMBIGUITY (ay = o0). Importantly, this means that the commonly used cross-validation
approach (which is based on the data-generating distribution D) for calibrating distributionally
robust optimization models could, unfortunately, work poorly in the situation of misspecification

(i.e., calibrating the index « for MISSPECIFICATION), as we demonstrate in the numerical study.
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6. Extensions
In this section, we extend the model MISSPECIFICATION along the following directions: (i) there
are multiple products, (i) the ambiguity set is defined via optimal transport, and (i) the extent

of misspecification is measured by ¢-divergence (total-variation distance).

6.1. Multiple Products

Our misspecification-averse model can be extended to the multi-product newsvendor problem.
Consider M products (each with unit price p; and cost ¢;, ¢ € [M]) whose random demands are
collectively denoted by @ = (ay,...,uy) that follows a multi-dimensional distribution F. The
misspecification-averse newsvendor then solves

max min {Erjw(q,u)]+a-d(F,C)}, (MULTIPLE)

q>0 FeP)f

where P, is the set of probability distributions supported on ]Rl‘f , the optimal-transport cost d(-, -)

is defined in (3) with the cost function ||-||2, ¢ = (q1,...,qa) is the vector of order quantities, and

M M
w(q,u) = Eﬂ'i(%aui) = Zpi -min{g;, u;} — ¢;g;.
i=1 i=1

If the ambiguity set C is specified by marginal mean-variance information of each product, then
as a straightforward case, MULTIPLE is separable concerning products and is thus equivalent to
Z max min {EFZ [’ﬂ'i(qi, 'ELZ)] +a- d(Fz, Ci)},

>0 F,eP
ie[M] !

where for each product i € [M], 4; ~ F; and the mean-variance ambiguity set C; = {G € P | Eg[0] =
Wi, Eq[0?] = u? + 02}. Theorem 2 then yields each product’s optimal order quantity.

If C is specified by mean and correlation information, then MULTIPLE becomes much more
involved, as its ambiguity-averse counterpart is already intractable (Hanasusanto et al. 2015,
Natarajan et al. 2018). For more details on the reformulation and computational difficulty of MUL-
TIPLE with complete covariance information, we refer to Section EC.6.

In the following, we show that an analytical solution can be derived for a case that captures
the partial correlation across products. In particular, we consider an ambiguity set with mean and
sum-of-variance constraints:

C= {GGPM ’ Eq[0:] = s Vi € [M], IEG[ > ﬁf] gK},
ie[M]
where K is some non-negative constant that bounds the sum of the variance of products’ demands.
Note that when M =1 (i.e., there is a single product), the ambiguity set C reduces to the mean-

variance ambiguity set A. The analytical solution to MULTIPLE with C relies on characterizing the
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optimal dual variable, denoted by A*, to its sum-of-variance constraint. We indicate that adopting
a similar technique, we can also obtain the optimal solution of MULTIPLE under an additional
budget constraint ), e @ < Q for some @ > 0.

To ease our presentation, let \g =0, \; = for i € [M] and A ma1 = too. Without loss

(2pi— p /a
of generality, we rearrange /\i,i € [M] ascendingly, i.e., A <X <...<)Ay. Besides, we define
i*=min{j € [M +1]|0;()\;) < K}, (12)
where for j € [M +1] and A >0,
pip?(a? cz+2acl)\ —I—pl -—cZ :
O.(\)= G 13

ie[MN\[j—1] i€[j—1]
We then present the following strong-duality result that characterizes the optimal dual variable to

the sum-of-variance constraint and the decomposibility of the dual problem.
THEOREM 4. Given K >0 and o« >0, MULTIPLE is equivalent to
max {—)\K—i- Z Hm()\)}.
1€[M]
Here, for each i€ [M], I (\) is the optimal value of the following optimization problem.:

HZQ(A) max min {IEF [7:(qi,U;)] + min {)\ Eg,[v f]+a~d(FZ-,Gi)}} (14)

7;>0 F,eP Gi€C;
with u; ~ F;, 0; ~G;, and C; ={G € P | Eg[0] = u;} being a mean ambiguity set. Moreover, with i*
defined in (12) and O;(-) defined in (13), the optimal solution \* is decreasing in K and can be
characterized as follows.

(i) If O (A1) < K, then \* = A\s_y.

(i3) If O (A1) > K, then \* € (Aj=_1, \ix) is the solution to the equation ©;(\) = K.

By Theorem 4, the value of A* can be efficiently determined,'® and given the value of \*, MULTI-
PLE can be decomposed into multiple misspecification-averse single-product newsvendor problems

n (14). In particular, each single-product problem is now regularized by

mln{)\ Eg, [07] + o d(F;, G)) }.

Gi€C;

Moreover, it is critical to note that the optimal dual variable A* captures not only the demand-
correlation information encoded in the sum-of-variance constraint, but also the cross-product cost
structure (i.e., p; and ¢;, ¢ € [M]) that collectively affects those single-product problems. The

following result adapts the reasoning for Theorem 2 to derive the analytical solution for MULTIPLE.

8 Indeed, the value of \* can be determined efficiently via a binary search, by noting that given j, the function ©,(\)
decreases in A; for more details, see the proof of Theorem 4.
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THEOREM 5 (OPTIMAL SOLUTION: MULTIPLE PRODUCTS). Given a> 0 and the optimal dual

variable \* characterized in Theorem 4, the optimal order quantity q, of MULTIPLE s

pi—2¢  p; bi
. BRI
P T i T —a/ov))
Ga =19 yarys ) Vi € [M]. (15)
7 AN+ a)pi; o< pi
a(pid /ot c;)? 2(ps — i/ (2A%))*

The analytical solution g% derived in (15) captures the information of distribution characteristics,
cost structure, and correlation across products. In particular, the optimal order quantity ¢;, for
each product ¢ is not only determined by its distribution characteristic (i.e., ;) and cost structure
(i.e, p; and ¢;), but also by those of other products via A\*. Furthermore, in the multi-product
problem, the index of misspecification aversion « has a double effect on the optimal order quantity
(i.e., a affects the optimal order quantity in two ways): on the one hand, it directly affects the
optimal order quantity ¢, of each product in the decomposed single-product problem (14); on the
other hand, it also affects the optimal dual variable A* that in turn influences the optimal order
quantities ¢;, of all products.

To better understand the ordering pattern of different products, we rewrite the formula (15) as

Di — € Di 3
i —— A=\
) Pt " aa 7
q. =
7, )\* )\* i 2 _
W +a)pa Y
a(pid/a+c¢;)?

Note that \*, once determined, is a fixed term shared by all products, and each term )\, is a
constant that features product ¢. Therefore, the above expression can be partitioned into two

patterns according to the comparisons between A\* and );’s as follows:

pPi —C; Di . .
* i + 1o i€ i*—1]
qA =
o NN +a)p :
‘ MI\[i* —1].
o fatey MM

Since Theorem 4 suggests that A\* is decreasing in K, a higher value of K for the sum of variance

* Yk 1,2
implies that more (resp., less) products would follow the pattern ¢}, = % (vesp., ¢}, =

. Pi=Ci __ Pi
i + B — ).

Finally, we emphasize that Theorem 5 generalizes Theorem 2 from a single product to multiple

products (see Section EC.5 for a detailed derivation) as well as the forthcoming Corollary 1 for
the ambiguity-averse multi-product model to ambiguity and misspecification aversion. Note that

as a — 0o, MULTIPLE immediately reduces to the ambiguity-averse only counterpart

max min Eglw(q, 9)]. (16)

Its optimal solution, as expected, generalizes the Scarf model from a single product to multiple

products (see Figure 6). The proof is straightforward and is thus omitted.
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Degeneration| Misspecification-averse multi-product model | Degeneration

Lok Theorem 5 a0
M>1,a>0
Misspecification-averse Ambiguity-averse
single-product Degeneration Degeneration multi-product
model P Scarf model =1 model
Theorem 2 Corollary 1

Figure 6 The closed-form solution (15) characterized in Theorem 5 generalizes the solutions for single-product
misspecification-averse (Theorem 2 for MISSPECIFICATION) and ambiguity-averse multi-product (Corol-

lary 1 for model (16)) newsvendor models, which in turn generalize the Scarf model AMBIGUITY.

COROLLARY 1. Let the optimal dual variable \* be characterized in Theorem /, the optimal

quantity q*, of the ambiguity-averse multi-product newsvendor problem (16) is given by

pi — ¢ > C;

Hit T = 2

G = ) Vi € [M].
' il &
p /“21/2 . )\* )\* < v
c; 2,

6.2. Distance-Based Ambiguity Set

Apart from the mean-variance ambiguity set A, the following distance-based ambiguity set
BO)={GeP|dG,H) <06}

with a reference distribution H, # > 0, and optimal-transport cost d(-,-) between probability dis-
tributions is a popular alternative for specifying partial distributional information, which has also
been widely used in aforementioned applications of decision theory (Petracou et al. 2022), newsven-
dor (Chen and Xie 2021, Zhang et al. 2023), and risk management (Wozabal 2014). Conceptually,
B(0) consists of all probability distributions in a @-neighbourhood around H, where the close-
ness is measured by d(-,-) given in (3). Since B(6,) C B(6,) for any 0, > 6, > 0, a larger value
of 6 indicates a lower confidence in H. When 6 = 0, B(6) shrinks to a singleton containing only
the reference distribution H, that is, B(0) = {H}. It is natural to consider the following variant
of MISSPECIFICATION where we replace A with B(6):

max min {EF[W(q,ﬂ)] +a-d(F, 8(9))}, (17)

q>0 FeP

which hedges against the possible misspecification over the ambiguity set B(f). Quite notably,
problem (17) is essentially equivalent to hedging against misspecification over the singleton {H }

but with a stronger aversion to misspecification. To avoid a degenerate case, we assume H (k) > 0.
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THEOREM 6 (OPTIMAL SOLUTION: DISTANCE-BASED AMBIGUITY SET). Given 6 >0, a >0
and a reference distribution H, there exists some v* € [0,a] such that problem (17) can be equiva-

lently reformulated as

max min {EF (e, @)] + 4 - d(F, H)}. (18)

>0 FeP

When 0 =0, v* = «; otherwise, with the optimal order quantity ¢} = H (k) of NOMINAL under
H and = foq;{ u?dH (u) >0, v* can be characterized as follows.

(i) If 6 > 3, then v* =0.

(ii) If 6 < B and a(1—+/6/B) < 2;’;{, then v* =a(1—+/0/5).
(i1i) If 0 < B and a(1 —+/8/5) > 25;{, then v* is the solution to

= P (P
/o udH(u)+4$2(/€ H(2x>> (oz—x)Q_O'

With ~*, the optimal order quantity . of problem (18) can be characterized as

I 2q%
11):;* pu— p p

s s P

a7 T g

Theorem 6 establishes the equivalence between problem (17)—which hedges against misspecifica-
tion over a distance-based ambiguity set B(#) around the reference distribution—and problem (18)
that, with a stronger aversion, hedges against misspecification to the reference distribution H. Note
that Theorem 6 states that v* = a whenever # = 0—which, indeed, corresponds to the ambiguity
neutrality. If we further have o — oo, then problem (17) reduces to NOMINAL under H, and as

expected, Theorem 6 concludes that 2. = gj.

6.3. Misspecification Measured by ¢-Divergence
Apart from the optimal-transport cost, ¢-divergence is also popular for measuring the closeness
between probability distributions. In this section, we replace d(-,-) in (3) with ¢-divergence when
defining d(F, A) and investigate the corresponding MISSPECIFICATION problem.

Formally, equipped with a convex function ¢ : R, — R such that ¢(z) is finite for all = > 0,
¢(1) =0, and ¢(0) = limy o ¢(t), the ¢-divergence of a probability distribution F relative to another
probability distribution G is defined as

/¢><dF>dG if F«G
de(F || G)=q Jr,  \dG

00 otherwise.
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Here, F' < G means that F' is absolutely continuous with respect to G. Specifically, we consider a
function ¢(t) = |t — 1] that would lead to the closed-form solution,'? making managerial insights
possible. The ¢-divergence equipped with such a function ¢(-) is also called the total variation
(TV) distance. Given this ¢-divergence, we investigate the following variant of MISSPECIFICATION:

max min min {Er[r(q,9)] + - ds(F | G)}. (19)

THEOREM 7 (OPTIMAL SOLUTION: TV-BASED MISSPECIFICATION). Given o > 0, the mean-
variance ambiguity set A, and the divergence function ¢(t) = |t —1|, problem (19) can be equivalently

reformulated as

o, min E[r(g,)]

2c
qu :mln{p,q;o},

where ¢, is the optimal order quantity of AMBIGUITY characterized in (1).

and its optimal order quantity is

Theorem 7 reveals that the optimal order quantity ¢’ of problem (19) grows increasingly and
linearly in «, capped by the optimal order quantity g% of AMBIGUITY. When « is sufficiently large
(that is, o > £q5.), g}, coincides with ¢’ . In this case, the newsvendor fully trusts the information
specified in A and essentially becomes misspecification neutral to the ambiguity set .A. Hence,
ambiguity aversion takes full charge of determining the formula of ¢%. When « is relatively small
(that is, o < £¢%.), ¢}, = 270‘ is then purely determined by misspecification aversion without being

affected by the mean-variance information in A.

7. Numerical Experiments with Retailing Data

In this section, we demonstrate the effectiveness of incorporating misspecification, using the real-
world daily demand data over one year for different stock keeping units (SKUs) of our industrial
partner (a supermarket). Our goal is to compare the out-of-sample expected profit of the optimal

order quantities obtained from MISSPECIFICATION and AMBIGUITY, as well as NOMINAL.?’

19We point out that other types of ¢-divergence can also be applied to problem (19) of misspecification, which
however are less computationally appealing. For instance, if dg(- || -) is defined as the Kullback—Leibler divergence
with ¢(t) =tlog(t) —t+1, then problem (19) becomes optimizing the worst-case CARA, which is generally intractable
(Chen and Sim 2023). Also, if we take dg(- || -) as the Gini concentration index with ¢(t) = % (¢t — 1), then problem
(19) becomes optimizing worst-case mean-variance, which does not admit analytical solutions either.

20 The solution of NOMINAL is obtained by using the discrete empirical data (SAA approach).
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7.1. Data and Models

Our data consists of a set of SKUs, and we first consider the popular drinking water (as mentioned
in Figure 1 and denoted by SKU,) that shows non-stationary characteristics, especially in the sense
of monthly mean and variance. For the experimental purpose, we consider the demand data in two
consecutive months as training and testing samples. In particular, according to the variability in
sales series and the associate mean-variance change over the consecutive months as demonstrated
in Figure 1, we identify October vs. November as a low-variability scenario, January vs. February
as a moderate-variability scenario, and August vs. September as a high-variability scenario. See the
first column of Figure 7, highlighting the non-stationarity of the demand.

At the end of the training month, the newsvendor obtains the demand observations (training
samples) 0p,...,0y and needs to determine the order quantity to satisfy the random demand
that will materialize in the testing month. The newsvendor solves NOMINAL with the empirical
distribution based on ?1,...,9y. For AMBIGUITY, the newsvendor estimates p and o2 of the mean-
variance ambiguity set A via sample mean and sample variance, that is, u = % ZZIL 0; and 0% =
+ Zf\il 07 — (% Zf\il @i)Q. However, taking these estimates as mean and variance of the demand
in the testing month may lead to misspecification (recall from Figure 1). It is thus meaningful to

consider MISSPECIFICATION with different values of «.

7.2. Results and Discussion
Figure 7 summarizes the results of different approaches in the three scenarios where the vari-
ability between training and testing samples is, respectively, low, moderate, and high. Regarding
the in-sample expected profit, in all scenarios, NOMINAL achieves the highest value, while Mis-
SPECIFICATION converges to AMBIGUITY as « approaches infinity. Focusing on the out-of-sample
performance, first, in the low-variability scenario (that is, the first row of Figure 7), NOMINAL
outperforms AMBIGUITY, and under most values of or, MISSPECIFICATION does not yield a higher
out-of-sample expected profit than NOMINAL—an intuitive result since the demand process is quite
stationary. Furthermore, in the moderate-variability scenario (that is, the second row of Figure 7),
NOMINAL yields $3.19 in the out-of-sample expected profit while MISSPECIFICATION (resp., AMBI-
GUITY) results in an improvement at most $0.54 or 16.93% in percentage (resp., an improvement of
$0.25 or 7.84%). Finally, in the high-variability scenario (that is, the third row of Figure 7), AMBI-
GuITY and MISSPECIFICATION have an even larger improvement in out-of-sample expected profit:
NOMINAL yields $3.24 while MISSPECIFICATION (resp., AMBIGUITY) results in an improvement at
most $2.65 or 81.79% (resp., an improvement of $1.18 or 36.42%).

In the third column of Figure 7, we emphasize two values of the index of misspecification aversion,

oV and o*. The former is selected via cross-validation using the training data, while the latter
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Figure 7 Kernel density of demand data and performance of MISSPECIFICATION, AMBIGUITY, and NOMINAL in
the low-variability scenario (first row), moderate-variability scenario (second row), and high-variability
scenario (third row). In the second (resp., third) column, the in-sample (resp., out-of-sample) expected

profit refers to the expected profit under the empirical distribution of training (resp., testing) samples.

is the one that achieves the largest out-of-sample expected profit. We would like to highlight two
important observations and insights as follows.

1. In the low-variability scenario with stationary demand, MISSPECIFICATION with ofV performs
quite close to NOMINAL and AMBIGUITY, and of"V is also close to o*. This, not only justifies
the predominance of mean-variance statistics in capturing the underlying distribution for
the newsvendor’s decision, but also implies the usefulness of the cross-validation method in

calibrating the parameter « of MISSPECIFICATION, in the situation of stationary demand.
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a | Performance Comparison | Percentage Iy Ia s
Mean | STD  Mean | STD  Mean | STD
IIy > g and Iy > s 28% 24.95]19.93 14.49 | 13.17  15.90 | 14.33
o Iy <IIg or Il <IIp 72% 5.09 | 7.22 8.60 | 8.94 8.80 | 8.45
. Iy > g and Iy > I 81% 12.07 | 10.95 9.74 1 9.72 9.56 | 9.15
O My <TIg or Ty <TIy 19% 13.28 | 14.55 1252 [ 13.59  15.91 | 15.51
i Iy > g and Ty > Ta 69% 11.49 | 11.04  10.03 | 10.10 9.58 | 9.50
Iy <IIg or Iy <IIp 31% 11.47 | 11.55  10.69 | 11.39  13.06 | 12.84
Table 2 Out-of-sample expected profits over 100 SKUs. For each SKU, aiow =p/100, atmia = p/20, and

anigh = p/10, where p is the unit price of the SKU. Here, we denote by Iln, ITa, and IIs the out-of-sample expected

profits of MISSPECIFICATION, AMBIGUITY, and NOMINAL, respectively.

2. In the moderate-variability and high-variability scenarios with non-stationary demand, the
calibrated MISSPECIFICATION model with a = ofV yields an out-of-sample performance close
to that of AMBIGUITY, which, however, is far away from the best performance that MISSPECI-
FICATION could achieve with o = «*. This verifies the implication of finite-sample performance
guarantee derived in Theorem 3: in the situation of distribution shift where the testing samples
vary highly from the training samples, cross-validation—purely relying on training samples—
could be depreciative in its effectiveness for calibrating a model’s parameter.

We next repeat the above experiment over a pool of 100 SKUs, for each of which we randomly
select two consecutive months as training and testing samples. For each SKU, we consider the
same setting as in Section 7.1 to evaluate the out-of-sample expected profits of MISSPECIFICATION,
AwMBIGUITY, and NOMINAL. Table 2 summarizes the number of SKUs that one model outperforms
another, and the corresponding mean and standard deviation of the out-of-sample profits of a model
over these SKUs. Under a small value of « (i.e., qyey), for 28% of 100 SKUs, MISSPECIFICATION
outperforms both AMBIGUITY and NOMINAL with a large profit improvement but a large standard
deviation; for the majority 72%, MI1SSPECIFICATION underperforms either AMBIGUITY or NOMINAL
with a large profit loss and a small standard deviation. Under a medium value of « (i.e., apia),
MISSPECIFICATION yields superior performance than both AMBIGUITY and NOMINAL by noting
that MISSPECIFICATION outperforms both AMBIGUITY and NOMINAL for a majority 81% of 100
SKUs. Even under a high value of a (i.e., nign), MISSPECIFICATION also has a fairly good out-
of-sample performance, where MISSPECIFICATION outperforms both AMBIGUITY and NOMINAL
for a majority 69% of 100 SKUs. In other words, for each & € {@iow, Qmid, Onign }, there always
quite a proportion of SKUs such that over these products MISSPECIFICATION has a better out-
of-sample performance than both AMBIGUITY and NOMINAL, justifying the need of incorporating

misspecification to the newsvendor problem.
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Figure 8 Boxplots of daily demand data of each SKU in two consecutive months, which we refer to as training

and testing period, respectively.

7.3. More Results on Multi-Product Model

We perform similar experiments using the multi-product newsvendor model MULTIPLE, for which
we employ the demand data of M =20 SKUs whose life cycles share two consecutive (training
and testing) months. The real-life demand data of these SKUs is visualized in Figure 8, which
demonstrates a non-negligible variability between the training and testing demand samples. We
estimate, with the training data, the parameters u,;’s and K of MULTIPLE by the sample means
and the sum of the sample second-order moment, respectively. We then test the performance of
MULTIPLE, the corresponding ambiguity-averse model (16), as well as the nominal counterpart.
Figure 9 plots the results of the three different approaches, and similar conclusions to the single-
product case can be drawn that justify the value of capturing the misspecification aversion in

newsvendor’s decision-making.
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Figure 9 Performance comparison of MULTIPLE, the ambiguity-averse multi-product newsvendor model (16), and

the associated nominal multi-product newsvendor model under the training empirical distribution.
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8. Conclusion
Since the seminal work of Scarf (1958), the mean-variance ambiguity set has been popularly
employed for decision-making in mitigating the distributional uncertainty. However, in many prac-
tical situations, the mean and variance can be misspecified, resulting consequently in inexpert
newsvendor decisions. To address this issue, we introduce misspecification upon ambiguity and
propose a misspecification-averse (and ambiguity-averse) newsvendor model. We investigate the
impact and rationale of misspecification aversion from decision-criterion, operational, and statistical
perspectives. We also extend our model to establish a comprehensive framework (multi-products,
ambiguity captured by optimal transport, and misspecification measured by ¢-divergence) for the
newsvendor under ambiguity and misspecification.

Our present study focuses on and has investigated many aspects of the misspecification-averse
newsvendor problem. The framework has several interesting directions remaining unexplored and

can be extended to other operational problems, opening up promising avenues for future studies.

Estimation of distribution shift. As articulated in Theorem 3, the performance guarantee
and the index of misspecification aversion are statistically described with a term of distribution
shift. How to estimate the distribution shift is critical and also practically relevant for calibrating
the index of misspecification aversion. This task is statistically involved and is also an important

research topic in machine learning (Lipton et al. 2018, Cauchois et al. 2024).

Misspecification in prescriptive analytics. Prescriptive analytics, as an emerging paradigm
for data-driven decision-making, seeks a decision rule that maps the observed data to an action,
which usually leverages some parametric or non-parametric (structural) assumptions on the uncer-
tainty (see, e.g., Bertsimas and Kallus 2020, Qi and Shen 2022, Chu et al. 2024). These parametric
or non-parametric models assumed could misspecify the ground truth. Therefore, we believe that
our approach, in marriage with the prescriptive analytics framework, has the potential to mitigate

the downside consequences of model misspecification.

Structuring distributional uncertainty in other operations management problems.

Although this study focuses on the newsvendor problem, our analysis can also be attempted in
other operations management settings, for instance, inventory control, logistics, dynamic pricing,
and project management, wherein the distributional uncertainty has been widely acknowledged.
Following the spirit of “all models are wrong, but some are useful” (Box 1976), we believe that
treating ambiguity and misspecification differently in a properly structured fashion can differentiate
the wseful wrong models and harmful wrong models in coping with uncertainty, and therefore

enhance the decisions for operations management.
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EC.1. Technical Lemmas
LEmMmA EC.1. For any F,G € P, d(F,G) in (3) is jointly convex in F and G.

Proof. Given F|, F,,G1,G5 € P, let I'y e W(F1,G1) and T'y € W(Fy, G5) be the joint distributions
that solve the corresponding optimal transport. That is,

d(F, Gh) _/

RJr XR+

|u —v]* T (du,dv) and d(FQ,Gg)—/ lu — v|? Ty (du, dv).

R+ XR+

We first show that the joint distribution I'y = (1 — A\)['; + A\I'y has marginals Fy = (1 — \)F} + AF,
and Gy = (1 — \)G; + AGs. In fact, for any Borel set B CR,, we have

CiBXxR)=(1-ANT1(BXR,)+AT(B xR, )= (1—N)Fi(B) + \F>(B)
TRy xB)=(1-N1(Ry xB) + AT (Ry x B) = (1 - N)G1(B) + \Go(B),

which implies that I'y € W(F)y,G,). As a result,

d(Fy, Gy) g/ lu— v T (du, dv)

R+><R+
=(1-X) lu —vl]? Fl(du,dv)—i—)\/ lu — v|? Ty (du, dv)
R+><R+ R+XR+
== (1 - )\) . d(Fl, Gl) + )\ . d(FQ,GQ),
where the last line follows from the definition of I'; and I's. O

LEMMA EC.2. Suppose that 0 < € < oo, and let Y: denote the optimal value of problem (4)

corresponding to €, and 117, the optimal value of MISSPECIFICATION corresponding to o. Then,

T =max {II, —eca}. (EC.1)

a>0

The optimal value o* of problem (EC.1) is achieved, and the optimal solution (q%.,F?.) of Mis-

SPECIFICATION associated with o = «* is also the optimal solution to problem (4).
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Proof. We start by fixing the order quantity. For any fixed ¢ > 0, we define a function ¢(q,e) =
ming g ay<e Er[m(q,7)]. First, it is clear that ¢(g,¢) is decreasing in e. Second, ¢(g,¢) is bounded
on R, because for any ¢ € [0,4+00), —cq < ¢(g,e) < (p — ¢)q. Third, ¢(q,e) is convex in € on
R, ;. To see this, we fix F|, F; € P and £,e5 > 0 such that d(F;, A) <&, and d(F3, A) <e,. Note
that d(F,A) = minge 4 d(F, Q) is also convex in F' because d(F,G) is jointly convex in F' and G
(Lemma EC.1) and maximization over a convex set preserves convexity. For any A € [0, 1], it holds
that
AAFy + (1 =N Fy, A) < Md(F1LA) + (1= N)d(Fy, A) < deqp+ (1 — Neo,

where the first inequality follows from the convexity of d(-,.A). Thus we have

P(g:Ae1+ (1= Nea) 2 Bamva-nm [1(g, @)] = A-Ep [1(g, @)] + (1= A) - Ep, [w(g, @)].

Taking the minimum over F; and F3 yields

o(q, Ae1 + (1= Nea) > Ap(g,e1) + (1 = Np(g, €2),

which establishes the convexity (and continuity) of ¢(g,e). Finally, given o > 0, the Legendre

transform of the convex function ¢(g,-) is

" (g, ) = min {ae + (g, )} =min min {ae +Erlr(q,a)] : d(F, A) < e}

—gnelg Iggl {ac+Ep[r(q u)]: d( A) <e}

which is concave in «. Note that the above relation also holds for e = 0. For any € > 0, applying
Legendre transform on the concave function ¢*(g,-) yields

(¢ (4,€))" = max {* (¢, ) — ae} = maux { min {Ex[m(q, )] + - d(F,A)} - caf.

>0

Since ¢(q,¢) is bounded, convex, and continuous, for any e > 0, it holds that ¢(q,e) = (¢*(gq,€))*.

We now optimize the order quantity. Maximizing over g > 0 yields

T =max o(g,e) =max min Eplr(q, o) (EC.2)
= max max {Iglelg {IEF[W(q,fL)]+a-d(F,A)}—€a} (EC.3)
= max {rgl%( I}¥1€17I31{EF[ 7(q ,d)]—i—a-d(F,A)}—aa} (EC.4)
= max {IT —eat}, (EC.5)

where (EC.4) follows from switching the “max” operators over ¢ and «, and (EC.5) follows from

the definition of II%. Indeed, the optimal value of (EC.5) is achieved at some finite a* > 0 because
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the function II* — e« is continuous in o with IIf —e¢-0=0 and II}, —ea = —00 as @ — co. Finally,
note that the optimal solution (a*, ¢*, F*) of (EC.4) has its part (¢*, F™*) being the optimal solution
of MISSPECIFICATION with o = o*, which we have denoted by (g%, F¥). Since (EC.4) and (EC.3)
are equivalent, (a*,q*, F*) (i.e., (a*,q%, F})) is also optimal to (EC.3). Consequently, (g%, F?.) is
optimal to (EC.2), i.e., problem (4). This concludes the proof. O

LEMMA EC.3 (INTERCHANGEABILITY). Given G € P and a measurable function h(-) : R — R
with Eg[h(1)] < +o0, we have
. ~ ~  ~12 _ : . 12
Fep}rgvr\l}(F,G)Ep[h(u)—i—a |t — 0|7 Eg[rggl {h(u) +a-|u—70]*}].

Proof. Denote by M the set of all measurable mappings from R, to R,. Since (R, ) is a
Polish space, the interchangeability principle holds, implying that

Eq| min {h(u) + o |u— 62}] = min Eg [h(m(0)) + o [m(0) - 3]°].

By theorem 1 in Zhang et al. (2022), it then holds that
i Ep[h(@)] + o Eplii — 3%} = Eq | mi u— o2
Fep’fggg(m){ r[h(@)] + o Erfla - o]} G[fgg{h(u)JrOé lu—o["}],

completing the proof. O

LEMMA EC.4. Let {(a,q,v) =min,so {7(q,u) + a(u —v)?}. For any fived v >0,
(i) if0<q< L, then
{(a,q,v) = min{av? pq} — cg;
(ii) if ¢ > =, then
owQ—cq 0<v<
la,q,v) =
(a,q,v) ‘ { » } »
p-min{v—-—,qp—cqv>—.
4o «

Proof. The function 7(g,v) 4+ a(v—u)? can be written as a piecewise quadratic function as follows:

_ 2
9,0, = prin{a,u} —cq + ofu—v)t = { gl =pu—co bl 0P use
Before proceeding, we denote the left and right derivatives of g(u,q,v) at u=wuy by ¢’ (ug) and
g’ (uo), respectively. Based on the value of v, there are three cases to consider.
(1)) fv>q+ &, de, g (¢) =2a(q—v)+p <0, then g(u) is decreasing over (0,q]. Note that
J' (u) =2a(u—v) =0 admits a unique solution u = v, implying that g(u) is decreasing in (g,v)

and increasing in [v,+00). Therefore, it holds that

min g(u,q,v) =min g(u) = g(v) = pg —cq.
u>0 u>q
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(i) If v <q, i.e., g\ (q) =2a(¢—v) >0, and we have ¢'(u) = 2a(u — v) + p =0 admits a unique
solution u = v — £, implying that g(u) is first decreasing in [0, (v—p/2«)*] and then increasing

in ((v—p/2a)*,q|, and g(u) is increasing in (g, +o0). Therefore, it holds that

+
min g(u,q,v) = min g(u)=g v L .
uz0 707 0<usq = ” 2a
(1ii) If g <v<q+£, e, g (¢)>0and g, (q) <0, then both g(u) and g(u) admit a corresponding

minimizer in the domain. It follows that

min g(u,q,v) =min {9<<U - ;;) +> ,§(v)} -
p

2
— < —
g((v_p>+>_ av® —cq v 5
= 2 - p p p
— By g L <v<qg+ .
p(v 4a) “ 2 Svsgt 2

We next discuss based on the value of . When ¢ > =, we have

Note that

(ozv?—cq vgﬂ
2c
p U—ﬂ —cq ﬂévﬁq
. . 4o 2a
o, g,v) =min g(u,q,v) =
uz . p p
p'mln{v—,q}—cqq§v§q+
4o 2c
pq—cq ’UZQH‘ﬂ
2c
( 2 p
av® —cq v< —
2c
_ p p p
= —— ) —cq —<v< —
p< 4a> 194 = _Q+4a
p
— > 2.
| P4— <4 U_Q+4av
When ¢ < -, we have
'ow2—cq v<q
min{av?, pg} — cq g<v< 2£
. «
u>0 . p p p
PrmMnqv———,q0—¢c¢ ;- <V<q+ -
4o 2c 2c
p
—C v > —.
| P4 —cq _Q+2a

If 2 <g<£, then min{av?,pg} = aw? for u € [g, £], resulting in

av? —cq vgzﬁ
«
g(a7Q7v): p(U—ZQ)—CQiSUSQ‘f‘i
pg—cq UZQ+£-
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ech

If ¢ < %, then p-min{v — ﬁ,q} —cq=pq—cq for v e [i,q—i— i] Correspondingly,

owQ—cqvS pq

(6% .
Ua, q,v) = = min{av’, pg} — cq.
Pq
pg—cq v> /=
(6%

Consolidating these results based on the three ranges of ¢ then completes the proof.
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EC.2. Proofs.
Proof of Theorem 1.

In the MISSPECIFICATION problem, given ¢ > 0 and G € A, it holds that
glel,g {EF[W(CL ﬂ)] ta- d(F7 G)} =Eq [151;{)1 {71'((], u) + a(u - 6)2} = EG[E(av q, 77)]

Here, the first equality follows from the interchangeability principle (Lemma EC.3) and the second
equality follows from ¢(c,q,v) = min,>o{7(g,u) + a(u —v)?} (see Lemma EC.4 for its closed-form

expression). It suffices to verify for any ¢ > 0 that
| a0 dr. (Gw) = [ ta.ar)d6) VG e
R, R,

In view of (i), that is, ¢ < =, we have

/R+ m(g,v) AT, [G](v) = /]R<+ (g, v) dG<\/§> :/R+7r(q, Zqﬂ) dG(v) = /]R+ U, q,v) dG(v),

where the second equality follows from the variable substitution v <~ y/£v and the third equality
follows from the fact that (o, g, v) = min{av?, pg} — cqg when ¢ < E.

As for (i1), that is, ¢ > =, we have

/R (0.0) A, [G)0) = / @G <\/§) 4 /OO (g, v)dG <v 4 ﬁy)

da

0
7% 00
= w(q,av2>dG(v)+/ W(q,v—p)dG(v)
0 p 2 4o

:/ e, q,v)dG(v),

0

where the second equality follows from the variable substitution: v <= /2v for v < = and v <~ v+ %
for v > = and the third equality follows from the fact that £(a,q,v) = min{av®,pq} — cqg = av® —cq

when v < Z and (o, q,v) =pmin{v—£,q} —cq when v > £. 0

Proof of Proposition 1.
We show that p¢ is a convex risk measure given G € A by verifying its cash invariance, monotonicity,

and convexity. First, note that for any r > 0, we have
Pl (m(q,0) + 1) = —min {Ep[n(q, @) + 7]+ a-d(F,G)} = p{ (v (q,0)) =,

which verifies the cash-invariance property of p,. Second, given F € P and any ¢i,q2 > 0 that

satisfy 7(q1,0) < w(qqe,w) almost surely, we have

—(Er[r(qr,0)] + - d(F,G)) > —(Ep[r(g2, )] + - d(F, G)),
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and hence p<(7(q1,7)) > pS (7(ga, 7)) by taking the maximum over F' € A, which implies the mono-
tonicity of p,. Finally, given o >0 and ¢;,¢2 > 0, it holds that

min {Ep[Am (g1, @) + (1 = A)w(gs, )] + - d(F, G) }
> A-min {Ep[r(q, @)] +a-d(F,G)} + (1= A) -min {Ep[r(gz, @)] + - d(F,G)},

and hence pS(Am(q1,0) + (1 — AN)7(q2,0)) < ApS(7(q1,0)) + (1 — N)p&(7(g2,0)), which establishes
the convexity of p,. O

Proof of Proposition 2.

Note that for any ¢ > 0, it holds that

(@)=, min_ {Belr(,0)] +a-d(F,G)} =min Ea[¥(a,q,5))

where U(a,q,v) =7(q, pa(v)). Given ¢ >0, L(q) is a classic moment problem as follows:

min /]R ) U(a,q,v) dG(v)

e
s.t. / vdG(v)=p o8y,
Ry
/ v dG) =pP+0o* -1y (PRIMAL)
Ry
/ dG(v)=1 c g,
Ry
GeM,,

whose dual is
max  [Sq — (y‘z + 0.2)7,(1 —ta

Sy Ty te

st sy — V1, —te <Y (a,q,v) Yo >0 (Duar)
s €R, r, €R, t, €R.

We next derive the expression of L(g) by constructing a pair of primal and dual feasible solutions
that attain the same objective value (i.e., strong duality holds between PRIMAL and DuAL). The
argument breaks into three scenarios based on the value of q.

Scenario 1. When 0 <q < 2 we first construct a feasible distribution to PRIMAL as follows:

1 p>—o*— 1 p?>—o?— b
Ga = - — & '51)1 + | =+ = ' 51}27 (ECG)
2 2/(B 112 +0%)2 — 42 2 2/(B 1 12 +0%)2 — 42 M1

where the support points are

1 2
v1=<pq+u2+02—\/<pq+,u2+02> —4,u2pq>
20\ « « «a

2
1
02:(m+u2+02+\/(pq+u2+0-2> _4N2@
[0 o «

21
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One can verify that G, € A and the corresponding primal objective value under G, is equal to

2
. a
Eco [¥(o, q,0)] = 2<Z:3+M2+02— \/(pq +u2+a2> _4M2pq> —¢q.

a a
We next construct a dual feasible solution that attains the same dual objective value. Note that

(o, q,v) =min{av®, pq} —cq Yv >0 when 0 < ¢ < Z (Lemma EC.4). Hence, DUAL becomes
max ot — To (1 +0%) —t,
st SaU =T —ta<av®—cq Yv>0
SqU — ToU? —to < pg—cq Yo >0
so €R, r, R, t, €R.

Consider the following solution:

o — 211pq
C(E 1 0% — 4P
o« P4 p? 40 .
fe=79 V& 2+ 0?)2 — 428 (EC.7)
B4 42+ o2
ta:pq< o TH _1>+qu
| 2 \ /(B + 2 +07)% — 4p2 B2

which satisfies

2
sa,u—ra(,uQ—I—UQ)—ta:g<po?+,u2+02—\/(?—I—uQ—I—UQ) —4u2po?> —cq.

It remains to argue that this solution is feasible to DuAL. If ¢ =0, then s, =71, =t, =0, naturally
feasible to DUAL. We next investigate ¢ > 0. In this case, r, > 0. The first semi-infinite constraint

of DUAL is equivalent to

max {8q0 — (T + a)v? —t, +cq} <0.

For the left-hand side maximization, the optimal solution is v* = > 0, which attains an

Sa
2(ra+a)

2
optimal value of 4(7‘i&+a) —to+cq=0. Hence, the first semi-infinite constraint is satisfied. Similarly,

the second semi-infinite constraint of DUAL is equivalent to
max {840 —To0* —tq —pq+cq} <0.

For the left-hand side, the optimal solution is v* = 32 and the corresponding optimal value is

2
Sa . (ra+a)
o —ta —pq +cqg=FE

— Py, —pq = 0. Hence, the second semi-infinite constraint is also

satisfied, concluding that solution (EC.7) is feasible to DUAL and establishing the strong duality.



e-companion to : Newsvendor under Mean-Variance Ambiguity and Misspecification ec9

‘ 2, 2
Scenario 2. When ¢ > £ and (2u— 2)q < p? +0° — 5%, DUAL becomes

max  Sopt — ro(p? +0?) —t,

Sas Ta, ta

St S —Ta¥? —t, <av® —cq Vo<v< 2£
«

sav—ra"UQ—tagp(v—ﬂ)—cq szﬂ

%" 2

2 p

SV = ToU” —toa <Pg—cq Yo > —

2c

sa €ER, r, R, t, €R.

Consider the pair of primal feasible solution (EC.6) and dual solution (EC.7). Upon the results in

Step 1, it remains to argue that solution (EC.7) is feasible to the above representation of DUAL.

Note that in Step 1, we have shown that s,v — 7,02 —t, < av? —cq Vo > 0 and 5,0 — 1,0 —to, < pg—

cq Yv > 0, which are, respectively, more restrictive than the first and third semi-infinite constraints

herein. Hence, the first and third constraints are satisfied. We next investigate the second constraint
2

max {(sa —p)v — 1o —ta+cq~|—ffa} <0.

D
V235

The unconstrained maximizer Sgr—*p of the left-hand side maximization satisfies
«

a 1 2
Salh_ 2 (P4 2y gr (P2 e2) —gePl) < B
2roa  2p\ @ “ 2

where the inequality follows from (24 — 2)g < p® + 0% — 5%, This implies that the constrained

maximization is attained at v = >, and we have

Saﬁ_rapiz_ta<ap72_cq:p ﬂ_ﬁ —cq,
20 402 ~ 42 200 4o

where the inequality follows from evaluating the first semi-infinite constraint at v = J=. Hence, the
second semi-infinite constraint is also satisfied, concluding this step.
Scenario 3. When ¢ > £ and (2u — £)q > p* + 0® — ££, we first construct a feasible primal
solution:
P _ P _
G :;(H \/(qiziu)“ﬂ) O +;(1 B \/(qjlrzfjci )2+02> O

(EC.8)

where

2 2
=g+ —[{g+=—pu) +0% and vy=q+-+y/(q+ L —p) +o2.
4o 4o 4o da

One can verify that G, € A and the corresponding primal objective value under G, is equal to

Eca[w(a,q,ﬂ)]zé)(u—q—i—\/(q+4];—u>2+a2> +(p—c)g.
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We next construct a dual feasible solution that attains the same dual objective value. Note that

when ¢ > £ and (2u— £)g > p? 4 0° — B2, DUAL becomes

max  Sop— ro(p® +0°) —t,

Sas Tas ta

St SaU—Tav? —t, <av?—cq VOSUSQg
«

sav—raUQ—tagp(v—£>—cq VUZ£

4o 2c

540 — 10 —t, < pq—cq szﬁ

2c

50 €ER, 7y €R, t, €R.
Consider the following solution:
To= P (EC.9)

2 2
p b p b b b
Py (qr 2 d to=2—trafq+2) +2(q+ L) - -0
STy ?”a<q 404)’ a ¢ 16r Ta<q a> 2<q a> (p=c)q

Because

2
O I} G B P AU
Saft —Ta(p”+07) L G ¢+ =) +o? )+ (p—o)g,
it remains to argue that this solution is feasible to DUAL. We observe that

2
2 b
max —p)v — +eqg—t,+— 5 <0.
nas {(sa P)U — 1oV +cq —ty }_

s
IV

0 achieves the

Indeed, for the left-hand side maximization, an optimal solution v* = 22=2 >

optimal value of m —tot+cq+ % = 0. Hence, it holds that

—ta—l—sav—ravzgp(v—%)—cqﬁan—cq Yo >0,
e

where the last inequality follows from the fact that p(v — £) < awv? Yo > 0. Consequently, the first
and second semi-infinite constraints are satisfied. Finally, we note that
Sa 2

9 s
max {SaV — roU° —t, +cq — =Sa—— —Ta—5 —tatcqg—pg=0
nax { , -+ cq—pq} . T d2 q—pq=0,

where the first equality follows from the fact that an optimal solution to the leftmost maximization
is v* = ;—“a and the second equality follows from the definition of (s.,r.,t,). Hence, the third
semi-infinite constraint holds, concluding this step.

Note that Scenario 1 and Scenario 2 correspond to the same objective function. Combining the

results in these three scenarios we then obtain the desired result immediately. O
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Proof of Theorem 2.
Defining L(q) = minge 4 E¢[V (v, ¢, )], MISSPECIFICATION is then equivalent to max,>o L(q). Note

2
that when x < 77—,

. e -
max min Eq[¥(a, ¢,9)] < max min Eglr(g,9)] =0,

where the inequality holds since ¥(«,q,v) = 7(q, v (v)) < 7(q,v) Yq > 0 and the equality fol-
lows from the tight lower bound derived in Scarf (1958). The order quantity ¢ = 0 satisfies
E¢[¥(a,0,0)] =0 VG € A (i.e., minge 4 E¢[¥(,0,7)] = 0). Hence, g% = 0. This corresponds to

case (i) in the statement. In the remainder of the proof, we focus on x > As shown in

2
2+2

Proposition 2, we have

2
P P P 2o .
2<u U \/(q+4a u) +0>+(p c)g ifqgeQ

2
@ <pq + 2402 — \/(pq + p2 + 02> - 4M2pq> —cq otherwise
2\ « « «

where Q={qeR; [¢> £, 2u—2)g>p*+0° — 54} as well as its derivative

P 2(q+ &) ) .
Plq_ a . f
2( JarZ—prtor) © e

L(q) =

L'(q) = . 22 4 o2 y2)

2( _\/(%+M2+02)2_4M2%

Based on the value of «, we divide the arguments into three different scenarios.

p

) —c¢ otherwise.

Scenario 1. Suppose that o < i, i.e., 2,u — 2 <0. For any ¢ > 2, it holds that (2u— £)q <

p

Cu—-2)E==2(u—E) -2 <y®+0° — L2 where the strict inequality follows from the fact that
Plu—5)<p?

when a < 2%. That is to say, for any g > 0 we have

2
(6]
L(q):<pq+u2+02—\/<pq+u2+a2> —4u2pq> —cq.
2\ « o o

Setting the derivative of L

A

q) to 0, we then obtain
(1_ 2(’%“4—02—#2)
P\ (8 g2 — g2

)—c:O — q=W -0’ +2f(1—k)uo)-

Scenario 2. Suppose that = T Sa<

P
2(p—0r/(1=r)/K)

Note that (2u — 2)E2 4+ 28 = 2(y — L) <
12+ 02, where the inequality is due to the fact that 2 (u— %) < ” . Hence, = <4+ "2p , yielding
o (pq pq ’ Pq 0 o’
S|+t = | A2 to?) —4p2 ) —cqg q< S+ -
2\ «a o o 2 2p-—-1*%
L(q)= (EC.10)

2
L S P 2 _ > H g
2(# . \/(‘”4@ u> +0>+(p c)q 19t
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Consider first ¢ < £ + o® _ Setting the derivative of L(q) to 0 then yields

2u—L -
q*:(M2—02+2f(1—/‘5)/“7)’g<ﬁ+ o’
" P2 2u—f’
. . iy D : I3 o?
where the inequality follows from the condition o < Erp—Y =y Consider next ¢ > £ + 5T

Since L(q) is concave, its derivative is decreasing. Hence, for any ¢ > £ + 2;_2 +, it holds that

2

7 o
L<L(E <L(g)=
(¢) < <2+2u—§> (¢;) =0,

2p

ﬁm. Then L(q) is given in (EClO) Consider ﬁrSt

q>5+ 2;_22. Setting L'(q%) =0 yields

concluding that the maximum of L(q) is indeed achieved in [0, £ + "j 7]. Therefore, ¢ is optimal.

Scenario 8. Suppose that o >

2
p . D p ) . . p
— — _— * _— — frnd = 1— _—
5 (u %~ 1m \/ (qa + - u) +0 ) +(p—0)q=0 = q.=p+of(l—r) a

Note that under the condition « > ——2—— ¢ =p+of(l—k)— L2 >L 4 "22. Consider

2(u=oy/(1=r)/5)’ o2 2wy

next ¢ < £ + Q:j 7. Since L(q) is concave, its derivative is decreasing. Hence, it holds that

2

p, o p
L/ >L/ ~ >L/ *: <7
@>L(5+ 5T ) 2L =0 va<h+

J2

2p

E,
[

concluding that the maximum of L(q) is indeed achieved in ¢ > £ + % Hence, g}, is optimal.

2u
By noting that Scenario 1 and Scenario 2 correspond to a« < ——E2— and Scenario 3

(n—0y/(1=K)/K)
p
2p—0y/(1—K)/r)’

we then complete the proof. ]
Proof of Proposition 3.

When p > max { “2;2"2 c, 204/;}, it holds that

corresponds to o >

1—2k a a (WP—o?+po(l—1/x))
* 2 2 *
O(: — 0 _|_ 0O———— - —_ = a:—- y
! (M a Ii(l—li)) =" (x2+1)

where we denote z = /"~ to have the second equality. The derivative of g} with respect to x is

gy, a 4po —pox® —2x(p® —o?) + po/z’

dr ¢ (x241)2

To determine the sign of %, it suffices to focus on the term 4po — pox? — 2z(p® — o?) + £5. Note

that when 2 >1 (i.e., k> 1), we have

2 2

. 2 2 2
4,u0,ua:r:22x(u202)+lf§5,u0/¢0x22x(/¢202):u0<x—|—'u 7 ) +5M07M.
x o o
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Since puo > 0, there must exist some z; > 1 such that when x > x, it holds that

2 2\ ?2 2
4w—uam2—zm<m—02>+‘fs—w(““ ) TP Gl Y}
x no no

As z is strictly increasing in (k and) p, it is clear that g% is strictly decreasing in p when

2 0.2

p>p;—max{ c,2au,c(mf+l)},
completing the proof. O

Proof of Proposition 4.

The formula of ¢, characterized in Theorem 2 can be rewritten as

.
p p K
1—k)—— <|u—=
utof(l=r) da ? <M 2a> 1-k
* 2 2 [0
Go=19 (W =0 +2M0f(1—’f))‘5 <u—> — <o \/>
0 > .
7H 1—/1
The derivative of g% with respect to o is
D K
1-— <(u—=*
oq’, fd=r) 7 ('u 2a> 1—k
do a
p
—204+2uf(1— -— - <o<
(=20 +2uf(1-#)) P (,u 2a) 1—r =710
which is decreasing in o. When > 1,
A )>OVEO( p) il
= — K o -
do - P20V 11—k

We proceed by dividing the argument into two cases. On the one hand, if a > p;“,

e R

which indicates that

a*
%:(—QU—FQ,uf(l—ﬁ)) 5<0 VUG[ \/ ,u\/lf/{J.

On the other hand, if a < p;c,

pf(l—rK)> (u—ﬂ) K,

which implies that

oq, by | K 9q;, K
—= > - E— — < _
0 Voe [(,u 5 ) 1 H,,uf(l m)] and 0 Voe |uf(l—k),p -

Combining the two cases together then yields the desired result. O
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Proof of Lemma 1.
We proceed with the proof by dividing the argument into two scenarios.

Scenario 1.1. If £ > £ by theorem 2.1 in Gelbrich(1990), for any G € Ay, it holds that d(D, G) >
(i —p)? + (6 — 0)?, and hence d(D, Ayx) > (jt — u)>+ (6 — 0)?. In the following, we show that the
inequality is tight. Consider the transformed random variable w = g U+ 1 — 2 ~ G where @~ D.
Since the @ is a linear transformation of @, we have d(D,G") = (i — p)* + (a —0)? (Dowson and
Landau 1982). Moreover, we can verify Eq:[w] = i, Eqt[0?] = 42 4+ 62, and GT{w € [0,+00)} =1
(since £ > £). Hence, Gt € Ay, concluding d(D, Ay) = (i — p)* + (6 — o).

Scenario 1.2. If g < £, we construct an upper bound for d(D, Ay). Consider the transformed

random variable @ = k' max{0,4 — t'} ~ G with @~ D, where k' >0 and t' > 0 satisfy

+o0 +oo
/ K (u—tHdD(u) =i and / kt2(u — #1)2dD(u) = 2 + 62, (EC.11)
tt tt

In the following, we first show that there exists (kf,¢") satisfying (EC.11). Eliminating the variable
k in (EC.11), it suffices to check whether there exists ¢ > 0 such that

2

2 /t +Oo(u—t)2dD(u)—(ﬂ2+(72)( /t +OO(u—t)dD(u)) 0.

Define h(t) =1
2 [7(u — t)dD(u
t

(u—1t)?dD(u) — (4* 4+ 6%)( ;roo(u —t)dD(u))?. Setting the derivative h'(t) =
(02 +62)(1 — D(t)) — %) to 0 then yields t° = D™} (=2 2+

( 5). It is straightfor-
(O) P2 (p? 4 0?) — p2(a* +62) < 0 and limy_, o h(t) = 0, which implies that
)=

)
ward to see that h
h(t®) > lim; 4 o h(t since h(t) is decreasing in (£°,+00). Therefore, there must exist some ¢’ €
[0,¢°] such that h(tT) =0, verifying the feasibility of (EC.11). This indicates that E.[w] = i and
Egi[w?] = 4?4+ 62. Additionally, since G'{w € [0,400)} =1, it is immediate to see that G' € Ay.

Subsequently, we identify the upper bounds for kT and t'. Note that for any ¢ € [0,¢°], we have

+oo
R'(t) =20*(1 - D(t)) —2d(t)(ﬂ2+&2)/ (u—1)dD(u) — 2(1 - D(t))*(4* + 6%) <0,
t
where d(t) is the density function of the distribution D. Hence, it holds that

h(t") —h(0) _ h(t°) — h(th) —h(0)t°
H_0 = r_a tTSh(#)—h(O)'

Note that as N — 400, h(0) — 0 and hence ¢! — 0. This implies that for sufficiently large N, t' < p.
o t
Since f; (u—t"dD(u) =p— fot udD(u) —tT(1 — D(t")) > p—t7(1 — D(0)), we then have

A~ A~

f f f

>p—t'(1-D(0)) = k'< < — < ,
p=ti(1=D(0) = p4 % T~ pt

=
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where the last inequality follows from the fact that M < 1'(0) since h”(t) <0 for any t € [0,t°].

Plugging the expressions of h(0) and h'(0), it is then immediate to see that

it A et
B IU’+ ;;/((00)) 'LL26-2 +ﬂ20-2

For the optimal-transport cost, note that the objective of the Kantorovich formulation as defined
n (3) is no larger than that of the Monge formulation (Villani 2009), i.e

dD,GY<  inf /0 " (w— (w)?dD(w). (EC.12)

Ty [D]=

By the definition of G, the function 9'(u) = k' - max{u —tf,0} is feasible to (EC.12). Hence,

d(D, Ay) <d(D,G) < /t w2dD(u) + /+°O(k*(u— 1) — w)2dD(u)

=,u2+02+,&2+&2—2kf/ (u—tHudD(u)
tt

2 e
§u2+02+ﬂ2+&2—mkm/ (u—1)*dD(u)
t
2 o (WO [P0?) (0P +67)
<pP+o’+pt+67— 257

R R R ) 20.2+ 20.2 "2_+_OA_2
(= )%+ (0 — 6)2 + 2+ 206 — (p fi*a?) (fi )

where the third line follows from u > u—t' and the fourth line follows from k&t < Besides,

724-”2 2

(1262 + 20%) (02 +6%)  u(u6? — j20%)  o(pé — o) | 6(jio — o)

2uft+ 206 — S5 = ) + + —
(26 pué 7 i
262 — 20?2  o(u6 —po)  o(po—ué
il Ui (o — po) | olfio — po)
o6 7 7
26— 2o
a o6 ’

where the inequality is due to £ < £. Hence, we have d(D, Ay) < (u—f)*+ (0 —6)* + wol—pto?

Combining the results in these two scenarios then completes the proof. O

Proof of Proposition 5.

We proceed in two steps. In the first step, we derive the concentration inequalities of sample mean
and variance, respectively. In the second step, we establish the concentration inequality for the
mean-variance ambiguity set.

Step 1. Note that for any = € R,

s o 20 0)] =Tl ee o (- <o (- 557)]
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where the expectation is taken with respect to the random sample 9;, the equality follows from the
fact that 91,...,0x are i.i.d, and the inequality follows from the fact that D is sub-Gaussian with
variance proxy 2. Hence, ji—p = % Zfil (0; — p) is sub-Gaussian with variance proxy ”—; According
to the concentration inequality of sample mean for sub-Gaussian distribution characterized in
lemma 1.3 of Rigollet and Jan-Christian (2023), with probability at least 1 — 7, we have

il <v 2log(2/n)

ii— | < . (EC.13)

By theorem 6.5 in Wainwright (2019), for any § > 0 there exist some constants C, Cy and Cj5 such
that with probability at least 1 —n, it holds that

o 1 1 log(C2/n) log(C2/n)
2 2_ 2 212 -~ L 2 ‘
o= J|_V01<N+VN>+V max{ CsN 4N

< -+ and /z <1+z for any x > 0, with probability at least 1 —n, we further have

P 2 log(Cs/n)
2 2_ 221V g(Ca/n
2 +06°—pu’—o |_\/ﬁ<201+1+(73 : (EC.14)

Note that
6% = 0% < |2+ 6% — 2 — 0% + |2 — 2| < [+ 6% — i — 0|+ (i — )P+ 2ulji — ], (EC.15)

where the first inequality follows from the triangle inequality, and the second inequality follows
from the fact that |a? — p?| = (@t — p)* +2u(p — )] < (ft — p)* + 2p| o — p]. Hence, it holds that

2= 0% _ (6%~ 0% _ |3 +8% — 0%+ (f— )’ + 2ulii—

o+o o o

Applying the reverse union bound to inequalities (EC.13) and (EC.14), we then have with proba-
bility at least 1 —mn,

2
Cs N N

L/ log(202/n)> »log(4/n) 2log(4/n) + 1>
<= —=(20,+1+ =200 49 +2 (EC.16)
=5 <\/N< ! o YTUN TN
_ &1+ & log(1/n)
VN ’
where & = £(v/(2C; + 1+ 22%2)) 4 2(v + 2u) log(4) + 2p1) and & = £(& +2v + 4p). Here, the

second inequality follows from the fact that + < \/% and /x <14z for any = > 0.

Step 2. To derive the concentration property for the mean-variance ambiguity, we divide the

argument into two cases based on the expression of d(D, Ay).
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Scenario 1. If £ > £ according to Lemma 1, we have d(D, Ay) = (i — p)? + (6 — o). By the
concentration inequalities for sample mean and sample variance derived in equations (EC.13)

and (EC.16), it is then immediate to see that with probability at least 1 —, it holds that

(= 1 + (6 - o) < 2 210BCLD) | (G 3 S log1/0)

o §i+2log(4)v? + (2616 + 20 log(1/n) + & (log(1/m))”
< Wi :

Let ¢ = & + 2log(4)v? and ( = 26,& + 2v2. When (2 > 4¢,£2, we have (; + (o log(1/n) +
&(log(1/n))* < (% + & log(1/n))?. Setting ¢; = 515?”’ and cy = & then yields the desired result.

When (3 < 4¢:£3, we have ¢ + (2 log(1/n) + &5 (log(1/n))? < (VG + &2 log(1/n))?. Setting 1 = /G
and cy; =&, then yields the desired result.

(EC.17)

Scenario 2. If g < L, it holds that

p’e® — pPo’ u\a —a?[+a*|a—pl
oo oo
p(1a? + 6% — i — a®| + (= p)* + 2p|fa — pl) +0°|o —
o6 ’

<

where the second inequality follows from inequality (EC.15). According to inequalities (EC.13)
and (EC.14), with probability at least 1 —n, it holds that

p(|p? 4 6% — p? — o®| + (i — p)* + 2ul v — pl) + 0°| o — pl

<201+1+10g(202/77)> (@t 4 02y | 208 2 2l0e(d/m)
Cs N N

v log(2Cz/77)> 2, oy 2log(4/n)+1 ,2log(4/n)
2C,; + — L 1+ 2t V—————F v ———=
_ 01 +05log(1/n)
VN ’
where &; =12p(2C; + 1+ log(2CQ ) +2log(4)(2p® + o + vp)v + (2p* + 0*)v and 6, = ”;—: +2(2u* +
o?)v +2uv?. When N is suﬁimently large, o > MM, and then (EC.16) implies that ¢ <

<
o
=

IN

=

| /\

o— %\;ﬁg(l/n) with probability at least 1 — 7. Hence, we have
. . 51+ log(1
o2 — plo? < %ﬁ”m _ 61+ dzlog(1/n)
oo _a(o—%\/%(l/")) VNo? — o (& + & log(1/n))

holds with probability at least 1 — 7. Note that for sufficiently large N, we have v No? > §; +
dalog(1/m) 4+ o (& + &21og(1/n)), which implies that

b1+ d21og(1/n) _0itd log(1/n) + o (& +&log(1/7))
VNo? —a(& + & log(1/n)) VNo?
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The above inequality, together with (EC.17), implies that with probability at least 1 — 7, for
sufficiently large N, it holds that

242 ~2 2
d(D, Ay) S(ﬂ—#)ﬂ(&-@%%

(&2 +2log(2)r*)0” + 0 + 0& + (2660° + 20°0” + 65 + 0,) log(1/n) + E0* (log(1/m))*

<

vV No?

Using a similar argument as in Scenario 1, we can also show that with probability at least 1 — 7,
2

for sufficiently large N, d(D,Ay) < % where ¢; and ¢, are some constants that only

depend on u, o and v. O

Proof of Theorem 3.
We proceed in three steps. In the first step, leveraging the equivalence between the following

constrained problem

YT:=max min Eg[r(q,a)] (EC.18)

920 d(F,A)<e

and MISSPECIFICATION (as shown in Lemma EC.2), we characterize the relationship between
¢ and «. In the second step, we translate the finite-sample performance guarantee of (EC.18)
characterized in Proposition 5 as the performance guarantee of MISSPECIFICATION.

Step 1. Given N and ey + d(F, D), consider the constrained problem (EC.18) with A= .4y and
e =en +d(F,D). Suppose that ay is an index of misspecification aversion such that MISSPECI-
FICATION with A= Ay and a = ay has the same optimal solution as that of the corresponding
constrained problem (EC.18). Denote by II?, = the optimal value of MISSPECIFICATION with v = avy.

By Lemma EC.2, we have
T sy =max {1 = (ex +d(F, D))o} =T, ~ (e +d(F, D).

In the following, we characterize the expression of a. Plugging the expression of the optimal order

quantity ¢’ into the worst-case transformed expectation characterized in Proposition 2, we have

ka2 — (ex +d(F, D))a a< 2’;}*
I, — (eny + d(F, D))o = —c
o -2 ey rapD)a az P
where
s - . 1=K
V=0 —0 .
K

Note that II}, — (ey + d(F, D))« is concave in aw. If ey +d(F, D) > k0*?, then I, — (ex +d(F, D))« is
decreasing in «, and hence max,>o{II* — (ex +d(F,D)))a} =0 with ay =0. If ey +d(F, D) < k0*?,
then by the first-order optimality condition, the maximum is attained at

p(p—c)
2 6N+d(F,D)

an =
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and

max {II%, — (e +d(F, D))a} =1, %\/p(p ) (en 1 d(F, D)).

a>0
To summarize the second step, we have obtained
p(p—c)

an=1{ 2\/ex +d(F,D)
0 ey + d(F, D) > ki*?,

en + d(F, D) < k™2

and

* * 1 *
T2y satey = (W =5V —O)en + d(F, D))

Step 2. Denote by ¢, the optimal solution to MISSPECIFICATION with a = vy, which, by
Lemma EC.2, is also the optimal solution to the constrained problem (EC.18). Note that the
empirical distribution G = * Zf\;l b; satisfies E4[0] = i and E[02] = 42 4 62. Hence, G € Ay. For
any I such that d(F, Ay) <ey +d(F, D), we have Er[n(q;, ,0)] > TI . p py- Therefore,

Ppv{Er[m(qs,, )] > T2, yarpy b = Pov{d(F, Ay) <ey+d(F,D)}

) (EC.19)
>Pyn{d(F,G) <ex+d(F,D)},

where the second inequality follows by noting that
d(D,AN) <ey = d(F,AN) < d(D,AN) —|—d(F,D) < €N+d(F,D)
Combining (EC.19) and the concentration inequality derived in Proposition 5, we have

Ppn{Er [W(q(*xwﬂ)] > T:N+d(F,D)} >1-n.

Plugging the expressions of ay and Y7 ., p) characterized in the first step, we can obtain the

desired result. OJ

Proof of Theorem 4.

For ease of notation, define G = {G € Py, | Eq[t;] = p; Vi€ [M]} and C; ={G € P | Eg|v;] = p;} for
i € [M]. Introducing the dual variable A > 0 to the sum-of-variance constraint in the ambiguity set,
then the MULTIPLE model can be equivalently reformulated as

me{—mU(+nwx min EF[Ejnﬁ%ao]+A-EG[§:iﬁ]+a-ﬂFX%},

A>0 q>0 FePy, GEG
i€[M] i€[M]

which, by noting that G is decomposable with respect to multiple products, further reduces to

— i s . 02 . -G
max { AK + 2 mex min {Er, [7(g;, @;)] + X Eg, [07] + o - d(F5, Gl)}}. (EC.20)
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In the remainder of the proof, we solve for the optimal \* and g* of problem (EC.20). Invoking

the interchangeability principle characterized in Lemma EC.3, then problem (EC.20) becomes
max { )\K—FZ;M] max énégl Eg, [g}i%{ﬂ(q“ul) + A0+ (u;— z?i)Q}] },

which, by defining F;(\, ¢;,v;) = X+ v + min,, >o{m (g, u;) + - (u; — v;)?} (see Lemma EC.4 for its

closed-form expression) for each i € [M] and wu; > 0, can be equivalently written as

max { AK + Z max min Eg, [Fi()\,qi,@i)]}. (EC.21)

2>0 >0 G,eC;
1€[M]

In the following, our remaining proof proceeds in three steps: deriving the expression for L;(q;) =
ming,ec;, Eq,[Fi(A ¢i,7;)] (Step 1), optimizing over ¢; to solve max,>oL;(¢;) for each i € [M]
(Step 2), and finally, optimizing over A >0 (Step 3). Note that given A >0, we solve the inner
maximization of problem (EC.21) over ¢; >0 for each i € [M] in Step 1 and Step 2.

Step 1. We drop the subscript ‘¢’ to avoid clutter. Given ¢ > 0, L(q) is a classical moment

problem as follows

win [ 1 (\g.0)dG()
G Ju,

s.t. vdG(v) = cee S

/]R+ W)= (PRIMAL)
/ dG(v) =1 -
Ry
GeM,,

whose dual is given by
ma;x USaq — Lo
st vy —ta <F (A q,v) Yo>0 (DuarL)
sq €ER, t, €R.
We next derive the expression of L(g) by constructing a pair of primal and dual feasible solutions
that attain the same objective value (that is, strong duality holds between PRIMAL and DUAL).

The argument breaks into nine scenarios based on the value of q.

Scenario 1.1. When ¢ < = and a/\Aj: 5 < <¢g< M we first construct a feasible distribution

to PRIMAL as follows:

One can verify that G, € A and the corresponding primal objective value under G, is equal to

AN A
Ec, [F(\g,5)] = 2uy/ XA TP e (EC.22)

Q
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We next construct a dual feasible that attains the same dual objective value. Note that F (A, q,v) =

Av® +min{aw?,pq} — cq Yo >0 when ¢ < Z. Hence, DUAL becomes

max (S — o

Sas ta

St VSq —ta <A+ a)v?—cqg Yv>0
VS —ta < MN%+pg—cq Yv>0

sa €R, t, €R.
Consider the following solution
A(A A
So =2 m, to = ﬂ—i—cq, (EC.23)
o' a

which satisfies

AA+a)pg  Apg
Salt —toa =20 (a)—a—cq.

It remains to argue that this solution is feasible to DUAL. Note that the first semi-infinite constraint
of DUAL is equivalent to

max {sqv — A+ a)v? —t, +cq} <0.

For the left-hand side maximization, the optimal solution is v* = 2(;11) > 0, which attains an

S

2
oaay —tatcog= 0. Hence, the first semi-infinite constraint is satisfied. Similarly,

optimal value of

the second semi-infinite constraint of DUAL is equivalent to
max {5q0 — M? —ty —pq+cq} <0.

For the left-hand side, the optimal solution is v* = 5& and the corresponding optimal value is

Pg(A+a)

[e3

52
B —ta—pgteg=
concluding that solution (EC.23) is feasible to DUAL and establishing the strong duality.

— 2L\ —pg = 0. Hence, the second semi-infinite constraint is also satisfied,

Scenario 1.2.  When ¢ < = and ¢ < p‘(l/(\jr‘z), we construct a primal feasible solution G, =9,
with a primal objective value Eq_ [F (), q,0)] = Au® + pg — ¢q. Consider the solution s, = 2Au and
to = Au? — (p — ¢)q, which satisfies s pu — t, = Au? + pg — cq. It remains to argue that this solution

is feasible to DUAL. For the first semi-infinite constraint of DUAL,

{ A+ a)v® —t, +cq} s to + aA“24— <0

max {s,v — a)v® —tateqp=—— —tatecg=— s U,

v>0 1 4(A+a) 1 Ata M

where the last inequality follows from ¢ < pi(’?j:z) For the second semi-infinite constraint of DUAL,

2
a

Nt —t — _ a4 —
Iil?g({sav A —t, —pg+cq} 75 to —pq+cq=0.

2
Scenario 1.5. When ¢ < 2 and ¢ > o‘(’\:%f)“, we construct a primal feasible solution G, = J,, with

a primal objective value Eq_ [F (), q,0)] = (A+ a)u? — c¢q. Consider the solution s, =2(A+ a)u and
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to = (A + a@)u? + cq, which satisfies sop — to = (A + a)u? — cq. For the first semi-infinite constraint

of DUAL,
2

rvnggc{sav—()mha)ﬁ—ta+cq}:ﬁ—ta+cqzo.

Similarly, for the second semi-infinite constraint of DUAL,

2 2
) s2 a(A+a)u
— — — = — — — - _ - <
max {840 — M —t, —pq+cq} 5 ta —pg+cq 5y pq <0,
where the last inequality follows from ¢ > O‘(A:if)“?.

. 2 2
Scenario 1.4. When £ <q¢< I+ K and p?;ﬁa) <g< a(’\:%;‘)”, DUAL becomes

max [4Sq — to

Sas ta
st 08y —te <A+ a)v?—cq VO§U§2£
o
VSq —ta < A2 +p v— 2 —cq Vo> 2
4o 2c
V8q — to < A2 +pg—cq Vo> 2
2

sq €ER, t, €R.

Consider the pair of primal feasible solution (EC.22) and dual solution (EC.23). Upon the results
established in Scenario 1.1, it remains to argue that solution (EC.7) is feasible to the above
representation of DUAL.

In Scenario 1.1, we have shown that s,v —t, < (A +a)v? —cq Yo >0 and s,v —t, < Av?+pg —
cq Yv > 0, which are, respectively, more restrictive than the first and third semi-infinite constraints

herein. Hence, the first and third constraints are satisfied. We next investigate the second constraint

2
max {(sa—p)v—)\vz—ta+cq+p}<0.

o> 4oy

The unconstrained maximizer S‘;;p of the left-hand side maximization satisfies

S5a—p  [(Aa)pq

<

— A
2\ pYe 2\ T 2a’
where the inequality follows from ¢ < - + . This implies that the constrained maximization is

attained at v = QL and we have

a?

2 2
p p p p p
ai_)\i_ta< o = PN )
"% “da? = Yoz~ p<2a 4a) “
where the inequality follows from evaluating the first semi-infinite constraint at v = ;. Hence, the

second semi-infinite constraint is also satisfied, concluding this scenario.

Scenario 1.5. When £ <q< B+ E and ¢ < p‘(’/\Aﬁz), we construct a primal feasible solution

G, =9, with a primal objective value E¢, [F (A, q,7)] = Au* + pg — c¢q. Consider the solution s, =
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2\p and t, = A\u? — (p — ¢)q, which satisfies s, — to, = A + pg — cq. The feasibility of (s,,t,) can
be verified similarly as in Scenario 1.2.

Scenario 1.6. When ﬁ <¢q< ﬁ + ﬁ and ¢ > a(’\:ij\l)’ﬁ, we construct a primal feasible solution
G, = ¢, with a primal objective value Eq_[F (), ¢,0)] = (A + a)u® — ¢g. Consider the solution
Sa =2(A+a)u and t, = (A + a)u® + cq, which satisfies s,p —to, = (A + a)u? — cq. The feasibility of
(Sasta) can be verified similarly as in Scenario 1.3.

Scenario 1.7. When ¢> = + K and p— = — K <q¢<p— &+ K, we first construct a primal

feasible solution:
?(M_ - ﬁ)) '5q+£7ﬁ + (% + %(u—q— i)) '6q+£+ﬁ'

One can verify that G, € A and the corresponding objective value under G, is equal to

Eg,[F (A q,0)] = <2)\q—|— W>M_ AP — A+ a)pg  (A+a)?p?

20 50 loarn T

Note that when ¢ > ﬁ + %, DUAL becomes

max Sy — o

Sas L

St VS, —ta < (A a)v? —cq VOSUSZE
@

p p

o —ta < MW? —=—)—cq Vo>

vs < ' +p(v 4a) cq Yoz 5=

VSq —to < X2 +pg—cq szﬁ

2c

s« €ER, t, €R.
Consider the following solution:
Ao At A+ a)?p?

2c0 2¢ 1602\

Because

2.2

20 50 larn  T9e

it remains to argue that this solution is feasible to DuAL. We observe that

2
2 p
— — — = L<o.
max {(sa P)v— A"+ cq—t,+ } 0

Indeed, for the left-hand side maximization, an optimal solution v* = 22 > - > () achieves the

2
optimal value of ﬁ —to+cqg+ % = 0. Hence, it holds that

—ta—l—sav—)\ﬁgp(v—%)—cqgowQ—cq Yo >0,
o
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where the last inequality follows from the fact that p(v — £) < awv? Yo > 0. Consequently, the first
and second semi-infinite constraints are satisfied. Finally, we note that

2
Sa _ ) Sa

e ta +cq—pg=0,

max {8q0 — AV? —to +cq—pq} = 84

where the first equality follows from the fact that an optimal solution to the leftmost maximization
is v* = 3% and the second equality follows from the definition of (s.,t.). Hence, the third semi-
infinite constraint holds, concluding this scenario.

Scenario 1.8. When ¢ > == and ¢ < pp— = — &, we construct a primal feasible solution G, =9,
with a primal objective value Eq_ [F (), q,?)] = Au? + pg — ¢q. Consider the solution s, = 2\u and
to = Au? — (p—¢)q, which satisfies s,pu —t, = Au? 4+ pg — cq. The feasibility of (s,,t,) can be verified
similarly as Step 1.2.

Scenario 1.9. When ¢ > = and ¢ > pu — = + J5, we first construct a primal feasible solution
G, =6, with a primal objective value B¢, [F (A, q,0)] = Au* +p(p — ) — cq. Consider the solution
Sq =2\ +p and t, = A\u® + % + cq, which satisfies sou — to = Au® + p(u — £) — cq. For the

feasibility of (s,,t.), note that

2
AP g —t,+ 2t =
max {(sa P)v— Av° +cq—t, + 4@} 0.

Hence, it holds that
2 p 2
—to + SqU — AV Sp(v—4—> —cqg<av'—cq Yv>0,
o

where the last inequality follows from the fact that p(v — £) < av® Vo > 0. Consequently, the first

and second semi-infinite constraints are satisfied. Finally, we note that

m>a§({sav—)\v2—ta—i-cq—pq}:p(,u—p—i-—Q> <0,

where the last equality follows from g > u— ;= + K. Hence, the third semi-infinite constraint holds.

To summarize Step 1, we note that when the constructed primal feasible distribution is G, =9,
(i.e., Scenarios 1.2, 1.3, 1.5, 1.6, 1.8, 1.9), the objective function L(q) is either increasing or
decreasing in ¢, implying that the maximum can not be attained in these scenarios. Therefore, we

only need to focus on the remaining scenarios (i.e., Scenarios 1.1, 1.4, 1.7) where

AN+« A
2 7( o )pq_zq_cq g€

(A4a)p s (A+a)pg  (A+a)*p?
I LA A P T =g g€

L(q) =

<2>\q +
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. aip? a(A+a)p
with Qi ={g|g< &+ & ey <a<® +)’}ansz {glg>L+L, p—L—-E<qg<

p— £+ & }. The corresponding derivative takes the form

A(A+a)p _Ap
agq a

7! —cC g€ 9
L'(q)=

2A i —20q — (M“’—i—p q € Qs.
Step 2. We consider three scenarios based on the values of a and A to solve for the optimal q.
Scenario 2.1. Suppose that A < =. For any g € Qy, setting the derivative of L(q) to 0 yields

AN + a)pp®

N = oot P

(EC.24)

p(("/(\j:i) <qg < Q(A;L%;‘)“ We next show that g% (\) < & + Z. Since given o >0,

One can verify that

0 P\ _pNp(alp—c)+ap+Ap)  p
A)—— )= > EC.2
da <q“( ) 4a> (ac+ Ap)? a2 7 0 (BC.25)
we have ,
P o_ p App” _ P
* _ & < 1 * = — < L
)~ L < 1im (qam L)L
where the last inequality follows from A < 3%. Since L(q) is concave, ¢,(A) is indeed optimal.
Scenario 2.2. Suppose that A > = o and a < m. For g € Q,, setting the derivative of L(q)
to 0 yields
“(n) = A+ a)pp? . [ aiu? a()ﬁ—a);ﬂ]
eV = alwlato? " pO+a) pr |
By (EC.25), g4()\) — £ is increasing in «, and we have
P . D —c+ 2/\,u 1 c P
() — 2 1 . P2l (- —)=2L,
) =g < s S (qa(k) 4a> ) 2= =1
n—c/(2X))

This implies that ¢ (\) € Q;. Hence, ¢ () is optimal.

Scenario 2.3. Suppose that A > = and o > m. For g € Q,, setting the derivative of L(q)
to 0 yields
p—2c p
£3) _p EC.2
G =pt P - L (BC.26)
One can verify that p— 2~ — £ <qgr(\) <p— 2+ K. Since A > i and o > m, we have
p—2c p—2c c
*()\) = £ v r—=c_(,_- = £ _ £ P
O R r red <“ 2/\>+4oz oy

which indicates that ¢ (\) € Qz. Therefore, g% () is optimal.

To summarize Step 2, we note that Scenario 2.1 and Scenario 2.2 correspond to a < m

and Scenario 2.8 corresponds to a > Hence, we have

p
2(u—c/@A) T

p—2c p p c
PETTIN Tda YTy <A2(2M—p/a)+>
AA+a)pp? P c

<A ( >

abpjater T 2u—c/@0r T @u—pla)t

q,=
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Step 3. We next solve the optimal A\* of the outer maximization of problem (EC.21), whose
objective function we denote by
QN =—AK+ > max min Eg,[Fi(\ ¢, 0)] =—AK+ Y Li(g;.(N).

q;>0 G;€C;
i1€[M] i€[M]

Note that given v; > 0 and i € [M], F;(\ q,v;) is jointly concave in (A,q;). Based on the first
equality, Q()\) is concave in A because (4) joint concavity of (A, q;) is preserved under non-negative
weighted integration and minimization over G; € C;; (ii) concavity of A is preserved under maximiza-
tion over ¢; > 0; and (éii) —AK is linear in A. Leveraging the closed-form expression of L;(q;,())),

we derive the expression of Q()\) and its derivative. When A < \; = Scenario 2.1 and

(24 pz/aﬁ (

Scenario 2.2), plugging the expression of g;,(\) in (EC.24), we have

Wiga(ta) 1 OL(@L (V) _ pmi(e’e + 2ae) + \p)

L(qF,(N) = =
(@ (Y) Ap; + ac; oA (Ap; + ac;)?
When A >\, = @ i7ay (Scenario 2.3), plugging the expression of ¢;,(A) in (EC.26), we have
* B A(ei — pi)pi + o€ + AN (s 4 pi) — (4 + ;) 8Li(qi*,a()\)) G (pi —ci)
Li(g:a(N) = 1o ) S PE

For any A € (\;_1, ;) with j € [M + 1], we then have

QY = AK+ Y Apipia(Ata) 3 dadpi(ps +pi — ¢) = i+ ac) (pi — &)

ey PiRec A dad
2 2 2
pipi(o?e; + 2ac; A+ Np;) ci(pi — ¢)
\) = -K i — L =—K+0,(})).
Q( ) + Z ()\pi+aci)2 +'Z 4AN2 + J( )
ie[M\[j—1] i€fj—1]

It can be noted that Q()) is concave and @’()\) is always decreasing in (A\;_1, A;), where at the end

points it holds that Q(X;) > Q' ();) for any j € [M +1]. On the one hand, if
Qi‘r(j\i**l) — _K + @i* (5\2‘*71) S O’

then when i* =1, we have Q'(A) < Q',(Ag) <0 for A >0, and hence \* = Ay = 0. When i* > 1, by
the definition of i*, we have Q" (\+_1) > 0. By the optimality condition of concave functions, it is

then clear that \* = \;»_;. On the other hand, if
Q;(j\i*—l) =—-K+ 0« (5\1'*—1) >0,

then since (i) Q" (A+) <0 by the definition of #* and (4) @Q'()) is continuous in (X\;+_1, A+ ), there
must exist some A\* € (A\j_1, \i+) such that Q"(\*) =0 (i.e., O+ (\*) = K), concluding Step 3. [

Proof of Theorem 5.
With the optimal dual variable A*, we can determine the optimal order quantity leveraging (EC.24)
and (EC.26) established in Step 2 of the proof for Theorem 4. O
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Proof of Theorem 6.
By the interchangeability principle (see Lemma EC.3), we have

- M2
max min min {Ep[r(y,0)] +a-d(F,G)} =max min Ec[mm{ﬂ(w, u) + a(u—) }],

Using a standard duality argument (see, e.g., Gao and Kleywegt 2023, Esfahani and Kuhn 2018),
the right-hand side problem admits an equivalent dual reformulation

max stt>1£) { —t0+Eg Lzraiglzo {m(¥,u) +a(u—v)*+tv— @)2}] }
with a random variable w ~ H. By the first-order optimality condition, for fixed © >0 and w > 0,
the problem min,>o{a(u—v)* + (v —w)*} = 25 (u —w)? with v* = “S;u+ LZw being an optimal
solution. That is to say, the above dual reformulation is equivalent to

g {00+ B {0 o

which, after interchanging the “max” operators over ¥ and ¢ and applying the variable substitution

v a+t, becomes

max { — —0+max Ey [mln {m(¢,u +’y(u—ﬂ))2}} } (EC.27)

0<y<a a—-y
Here, v = a corresponds to ¢t = oo, and lim,_,,_ —%9 =0if 0 =0 and lim,_,,_ —%9 = oo if
6 > 0. Hence, there must exists v* € [0, a] such that problem (EC.27) can be equivalently solved by

max EH|:H1111 {m(v, )+»y*.(u—u~))2}} = max min Er[r(y, @) +~* - (4 —w)?]

$>0 u> >0 FeP,TeW(F,H)

=max min {Eg[r(¢,a)] +~*-d(F,H)},

>0 FEP
where the first equality follows from Lemma EC.3, and the second equality follows from the defi-
nition of d(F, H). Hence, problem (17) is equivalent to maxy>omingep{Ep[r (¢, @) +~v*-d(F, H)}
for some v* € [0, a].
In the remainder of the proof, we solve the optimal v* and . of problem (EC.27). For any fixed
w >0, define ¥(v,q,w) =min,>e{m(q,u) +v(u—w)?}. Problem (EC.27) is then equivalent to

Jnax {— - 704—1};&){ Ex [¥(v,¢,0)] } (EC.28)

We first solve, by the first-order optimality condition, the inner maximization of problem (EC.28)
given v € [0, a]. Let Z(v)) =Eg[V(y,1,w)]. Given w > 0, ¥(y,%,w) is concave in ). Since concavity
is preserved under non-negative weighted integration, Z () is also concave, and hence, its derivative

is decreasing in . In particular, the derivative of Z(1)) is
p-Py{y@*>ppt—c < f

p'PH{d’—%Z@Z)}—C @ZJZ%

Z/(0) =
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with Z'(0) =p — ¢ >0 and limy_,o, Z'(¢)) = —c < 0. Let vy = s If v <7, then Z’(%) =p(k —
H
H(£)) <0. Hence, the maximum of Z(1) is attained in [0, £]. Setting the derivative to 0 yields
* * \2 Y p
= =< EC.29
If v > 70, then Z'(Z) = p(k — H(£)) = 0, implying that the maximum of Z(¢)) must be attained

in [£,00). Setting the derivative to 0 then yields

ﬂ7
(EC.30)

We next solve the optimal v* of the outer maximization of problem (EC.28), whose objective

function we denote by

Q) == o0+ max En [V (3,4, @)] = — -0+ By [ (7,93,

Note that given w >0, ¥(v,%,w) is jointly concave in (,1). Based on the first equality, Q(v) is
concave in =y because (i) concavity of (7,) is preserved under non-negative weighted integration;
(ii) concavity of v is preserved under maximization over 1 > 0; and (iii) — 50 is concave in 7.
Leveraging the closed-form expression of ¥(«,,w) in Lemma EC.3, we derive the expression of

Q(v) and its derivative. When v <, plugging the expression of ¥* in (EC.29), we have

ay - ay W
a? W
Q/’yze—f—/ wdH (w).
() ==t [ v (w)
When 7 > 7y, plugging the expression of 1% in (EC.30), we have
ay % 2 T p
Qly) =— 9—1—/ yw dH(w)—l—/ p(w—)dH(w)
a—7 0 2 4y

00 = D (o (L)) [

Note that Q’'(7) is always decreasing in v. When 6 =0, it is straightforward to see that Q'(y) >0
regardless of whether v <~y or v > ~,. Hence, v* = a (which corresponds to t* = oo in the dual
reformulation). In the following, we focus on € > 0. Based on the sign of Q'(0), we divide the
problem into two scenarios: > 3 and 6 < 3, with 8= foq% u?dH (u).

For the former scenario of 0 > 3, Q'(v) < Q'(0) = —0 + 5 <0 for any v € [0,«]. Hence, the
maximum of Q(v) is attained at 4* = 0. Equation (EC.29) then yields 1. = 0. This corresponds

to the case (i) in the statement.
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For the latter scenario of < 3, Q'(0) = —0+ 3 > 0. To proceed, we further consider two situations
based on the sign of Q'(vyo). If 1 — \/g< L e, \/§< 2 then

a—vp’

Q00 =5- o= (VB+ Vi) (o - ) vi<o

(a—7)? a—"7 0 a—

Since Q'(0) = —6+ > 0, the maximum of Q() must be attained in [0,~,]. Setting the derivative
of Q(7) to 0 yields v* = a(1 — \/%) < 0. By equation (EC.29) we have

Y SR LA

This corresponds to case (i7) in the statement. If 1 — \/% > 10 then Q'(vo) > 0. Moreover, 6 >0

gives )" (o) = —oo, which further implies that there exists some v* € [y, ) such that

S +/2£* 24H (w) = 0
(a—7)2 " 42" 2y A

Equation (EC.30) then yields 1. = qj; — 45*. This corresponds to case (#4) in the statement. [

Proof of Theorem 7.
By theorem 4.2 in Ben-Tal and Teboulle (2007), given G € A we have

min {Ep[r(g,8)] + - dy(F || G)} = max {T—O"EG [‘f’* <T_7;(qv)>] }

FeP

where the conjugate function ¢*(s) = max{—1,s} has a domain (—oo,1]. Then for any v > 0,

T—m(q,v) <, i.e., T < a—cq. Plugging the expression of ¢*(-), problem (19) becomes

max min max {7 —Eg[max{~a,7—7(q,9)}}

= max min max {~Eg[max{—a—7,-(q¢,7)}}

= max min max Egmin{a+7,7(¢,9)}]

= max min max {Eg[min{o—7+cq,p?,pg}] - cq},

where the last line follows from the variable substitution —7 <— 7 and 7(gq,v) =p-min{q,v} — cq.
We first look at the inner maximization over 7. For any 7 > o+ ¢q (resp., 7 < a — (p — ¢)q),
min{a — 7 + ¢q,pv,pq} = 0 (resp., = min{pv,pq}) and hence, Eg[min{a — 7 + cq,p0,pq}] — cq is
independent of 7. Since it is continuous in 7, the maximum must be attained in [ — (p— ¢)q, a +cq].
Consequently, it suffices to focus on a — (p—¢)g < 7 < a+cq, which, with the prerequisite 7 > cqg—«,

becomes 0 < a — 7 + ¢q < min{pq, 2a}.
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We next look at the optimization over ¢ > 0:

. E . . ~11
r{]lzag( glelﬂ Ogaf‘rJrCIt?SaIfl(in{pq,Qa} { G[mln{a T+ Cq,p’l)}] Cq}

= I o I oy (BoRin{mpT] )

= max HllIl {EG [min{pq, 2c, p0}] — cq},
q>0 GeA

where the first equality follows from the variable substitution 7 <— o — 7 4+ ¢¢ and the second
equality follows from the fact that Eq[min{r,pt}] is increasing in 7 so its maximum is attained at
min{pq, 2a}. When ¢ > 27“, the objective function Eg[min{pg, 2, pt}] — cq = Eq¢[min{2«, pt}] — cq
is decreasing in ¢ given G € A. Hence, it is optimal to set ¢ to Qf whenever ¢ > %. That is to say,

the optimal order quantity of problem (19) must reside in [0, 27"“] For this interval, we have

A min {Eq[min{pg, 2a, po}] — cq} = o, min Eg[r(q,0)],

where the equality follows from the fact that min{pq,2«a,pv} = min{pq,pv} for any v > 0 and
q< 2?“. Hence, it suffices to solve the right-hand side problem—a variant of AMBIGUITY with an
additional upper bound 2?“ on the order quantity. Let ®(q) = minge 4 Eg[m(q,?)]. As shown in Scarf
(1958), when K< #202, ®(q) is decreasing in ¢, so the optimal order quantity is g% = 0. When
K> 2+02, ®(q) is increasing in [0, + o f(1 — k)] while decreasing in [+ of(1 — k), 00). Hence,
¢ =min {2?“, p+0of(1—k)}. Combining the expression of ¢’ in (1) then completes the proof. [

EC.3. Transformed Worst-Case Distribution

In this section, we derive the worst-case transformed distribution 7, [G?] given an order quantity

q > 0. For ease of notation, we define

1 2
Ul:<pq+,u2—|—02\/<pq+u2+02> 4,u2pq>
2u\ « « o
1 2
vy = ( i to +\/<m+u2+02> —4u2pq>
2,u « o
p p ’
U3:q+@_ <q+4a—u> + 0?2
p p ’
va=q+ -+ (q+4a ) + 2.

ProrosITION EC.1 (WORST-CASE TRANSFORMED DISTRIBUTION). Given ¢ >0 and a > 0,

the worst-case transformed distribution T, |G| of TRANSFORM can be characterized as follows.

(i) When 0 <q < =, we have

*1 1 u—=o 1 u-—0o
ToalGal= (2_ 2/(E+ 17+ o) —4u2”‘1> gt <2+ 2/(E 412+ 07)? —4u2”q> g
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(i) When q> £ and (2p— 2)q < p®+ 0% — B~ we have

2’

1 2_0,2_ﬂ 1 Q_UQ_E

(i) When q> E and (2u—2)g> p?>+0° — B2, we have

2’
1 +&- 1 +2 -
T,.[Gu] =~ 7 o Sy b 2 97 20

1+ -6, 1— Oy,
2< Vit - )2+a2> 2( Via+ - )2+02>

Proof. Given ¢ > 0, we have derived the expression of the worst-case distribution G as in (EC.6)

and (EC.8). Plugging the expression of ¢,, we then obtain the desired results. g

EC.4. On the Computation of d(D, Ay)
In this section, we provide an exact computation for the distance between the data-generating
distribution D and the mean-variance ambiguity set Ap. If g > £, the closed-form expression for

d(D, Ay) has been derived in Lemma 1, and we shall focus on £ < £ subsequently.

PROPOSITION EC.2. If £ < £, then we have d(D, Ay) = —2s*i — (2r* + 1)(3® + 6%) + p* + 02,
where (s*,7*) is the solution to the following equation
“+o0 +oo B
/ (u—s)dD(u) = (r* + 1), / (u—s*)"dD(u) = (r" +1)*(2*+67).
Proof. Note that the distance between D and Ay can be written as the following moment problem
min Er[(7 — 0)?
s.t. Eg[ﬁ] = [L
Eq[0?] = i + 62
u~D,v~GeP, (a1)~TeWD,QG).

Introducing dual variables to the moment constraints, we obtain an equivalent dual reformulation

Q>

D4 min Ky [(a—ﬁ)2+sf}+r62]}

N ~2
su —Ssi—r
5}) { H (A" + GeP,TewW(D,G)

= sup { —sfi—r(f@* +6°) +ED[m>i%)1{(ﬂ—v)2+sv+r02}} },

where the equality follows from the interchangeability characterized in Lemma EC.3. We preceed
the remaining proof by solving the inner minimization problem over v and the outer maximization
problem over s and r sequentially. For ease of notation, we define g(v) = (u —v)? 4+ sv + rv? and
Q(s,r)=—sfi—r(i*+6%) +Ep[min,so { (@ —v)*+ sv+rv?}]. For the inner minimization problem
over v > 0, to ensure that g(v) has a finite minimum value, we must have r + 1 > 0. Moreover, it is

straightforward to verify that the function Q(s,r) is jointly concave in (s,r). In the following, we

divide the problem into two arguments.
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(s—Qu)2
4(r+1)

Scenario 1. When s <0, it is straightforward to see that min,>og(v) = — + u? with

s—2u

2(r+1)°

minimizer v* = — Hence, the objective function becomes

Ec[(s —2u)?%
4(r+1)

Consider the partial derivatives of Q(s,r) with respect to s,

9Q(s,r) __s—=2u+2(r+ 1 0Q(s,7) -2

os 2(r+1) ooor ~(

P +0%) +sp—

2 2 on o r2 | A2
+uttot=—sp—r(p®+5°)+ 1

Q(s,r) =—sp—r(f*+6%) -

1240 — st =
+06%) + 4
(r+1)2

Under the condition £ < £, we consider the solution (s*,7*) = (0, ¥ pied 1). It is straightforward
* *U 7 * * \/‘Lm
to verify that % >0 and % = 0. Note that for any s <0 and r, we have
a * * 6 * *
0s or

which implies that s* and r* are indeed optimal by the optimality condition of concave functions.

_5*)+ —T*)SO,

Plugging the expressions of s* and r*, the objective function then becomes Q(s*,7*) = (/u? + o2 —
ViE+62)?2 < (u—)*+ (0 — 6)?, which implies that the optimum would not be attained in this

case since it always holds that d(D, Ax) > (u— 1)? + (6 — 6)2.
=32

r+1

Scenario 2. When s > 0, it is straightforward to verify that min,>og(v) = + u? when

u> £, and min,>o g(v) = u® when u < £. Hence, the objective function becomes

u—2)?

“+o0
Q(s,r)z—sﬂ—r<ﬂ2+62)—/ (r—i-l dD(u) + p? + o>
%

If £ < £ we consider the solution (s*,r*) that satisfies

ﬂm (u— S*>dD( )= (r"+1)i, /W (u— i)QdD(u) = (" +1)2(32 + 62). (EC.31)

2 2
We first show that there exists some s > 0 and r > —1 satisfying (EC.31). To this end, we eliminate
the variable r, and it suffices to check whether there is s > 0 such that

,12[00 <u—;>2dD(u)—(ﬂ2+&2)</;oo <u—2>dD( )>2:o.

Define h(s) = ji? f (u—£)2dD(u) — (42 +62)(f;°°(u— £)dD(u))?. Setting the derivative R (s)=
f;oo(u— 2)dD(u)((f* +6*)(1 = D(%)) — f1*) to 0 then yields that s®=2D~ ( ) It is straight-
(0) =

forward to see that h(0

@2 (u? 4 o?) — p?(p? + 62%) < 0 and lim, o h(s ) =0, which implies
that h(s®) > lim,_, . h(s) =0 since h(s) is decreasing in (s°,+0o0). Therefore, there must exist
some s* € [0,s°] and r* > —1 satisfying the moment constraints (EC.31). Moreover, it can be ver-

ified that (s*,7*) satisfies the first-order condition, i.e., OQ((;;”*) = aQ(;:’T*) = 0. Hence, (s*,7*) is

optimal. Plugging the conditions (EC.31) into the objective function, we then obtain Q(s*,7*) =
—s*— (2r* +1)(4* + 6%) + p? + o%. Applying the variable substitution s* — 2s* then yields the

desired result immediately. O
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EC.5. On the Generality of Theorem 5

In this section, we show how Theorem 5 generalizes Theorem 2 for single product to multiple
products. To see this, let K = u?+ 0?2 and note that for the single-product problem, \* is essentially
the optimal dual variable 7% in problem (7). Plugging the expression of ¢* into equations (EC.7)
and (EC.9), it is immediate to see that

k(1 —k) o’ P
— K2 ——F, a2
2po w+o 2(p—o+/(1—kK)/kK)
_ _ 2
Pt = ay/k(1 /i)(u_o_ 1 /@) o> 20 a< P
o K w+o 2(u—o+/(1—kK)/K)
2
o
0 H<M2+02'

L, v \/r(l—r) _p
Py rumypt it holds that A\* = ¥—5=— and hence, 55— o =

. By Theorem 5, we have

2
If/izug"ﬁ and o >

p

2(p-o/(1—r)/r)

. p—2 p 2k —1 P
Ge=IT T Taa T k(1—r) 4o
P ar/k(1—k) 1—k . .
If k> 2722 and o < ——2Z—— then \* = 7(/; — 04/ —) In this case, we can verify
= nite 2(u—0y/(1=r)/r)’ o K '

that a < 3 thus by Theorem 5,

p
2(u—c/ (A7

. NNV Ha)pp?

= aOvpatop = Wm0 2o f(1-x):

SRS

If kK < M;’TZUQ, we always have \* =0, leading to ¢ = 0. Consolidating these three scenarios then

recovers the optimal solution (9) in Theorem 2.

EC.6. Multiple Products with Complete Covariance Information

In line with the setting of Section 6.1, we study misspecification-averse multi-product newsvendor
with mean and (complete) covariance information. Consider M products (with unit price p; and
cost ¢;) whose random demands are collectively denoted by @ = (4y,...,4;) ~ F that follows a
multi-dimensional distribution F. The misspecification-averse newsvendor then solves

max min {Erjw(q,u)]+a-d(F,A)}, (EC.32)

q>0 FePy

where the function w(q,u) = Zf\il m:(qi, ui), the optimal-transport cost d(-,-) is defined in (3) with

Lo-norm, and the ambiguity set is specified by mean and covariance information, i.e.,

A={G Py | Bglt] = p, Bal(6— )5 — )] ==}, (EC.33)
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ProrosiTION EC.3. For the ambiguity set (EC.33) with mean and covariance information, the

misspecification-averse multi-product newsvendor problem (EC.32) is equivalent to

max t+ A T p+(Q,E+pp’)

st. t+ATv+ <Q,’U’UT> < Z U, (a,qi,v;) Yo >0 (EC.34)
1€[M]
Q=0,920,
where for each i € [M],
min{av;, pg;} — ciq; 0<¢ < %
o'
Pi Di
Ui(a, qi,0;) = { QU — g %> 0<v < % (EC.35)
. Pi } Di P;
: i~ Qi —CiGi §i >, Uy >
p mm{v 4aq ciqi q 4o v 2c

Proof. By the definition of d(F,.A), problem (EC.32) is equivalent to

Z Wi(Qi,ﬂi)

q>0 FePy,GeA
i€[M]

max min {E F

+a-d(F,G)}.

Leveraging the multidimensional version of the interchangeability principle characterized in

Lemma EC.3, we arrive at

] 3 . . . . — N. 2
max min Eq [ggg { D milgn )+ Y (ui— 1) }],

1€[M] 1€[M)]
by noting that the innermost optimization problem is separable concerning products, which further
reduces

max min Eq
g>0 GeA

Z ani% {m(qi,ui) +a-(u; — 61)2}] )

1=

ic[M)

For any fixed v; > 0, defining ¥, («, ¢;, v;) = min,>o{m (¢, u) + a(u—v;)*} (see Lemma EC.4 for its

closed-form expression) and leveraging a standard duality result for moment problem (see, e.g.,

Hanasusanto et al. 2015), we then obtain the desired result immediately. O
Recall from Natarajan et al. (2018) that the ambiguity-averse multi-product newsvendor problem

max min Eq[w(q,0)]

admits an equivalent dual reformulation
max t+ AT p+(Q, X+ pp’)

st. t+ATv+(Q,vv") < Z mi(qi,v;) Yo >0 (EC.36)
1€[M]

Q~0,q>0,
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which involves 2M quadratic constraints by a complete expansion of the function Zie[ M mi(qi, i),
and is already known to be intractable due to the full covariance structure (Hanasusanto et al. 2015,
Natarajan and Teo 2017). Clearly, the function ¥,(«, ¢;,v;) with the formulation (EC.35) is more
complicated than the newsvendor profit function 7;(g;,v;). Therefore, the misspecification-averse
problem (EC.34), compared to (EC.36), can be even more challenging to solve.

Nevertheless, we can adapt the decision-rule approaches to solve the problem (EC.34) approxi-
mately. For instance, we can identify a pair of lower and upper bound of the problem (EC.34), by
noting that for any i € [M], ¢; >0 and v; >0,

Li(o, qi,v) = pi-min {v; — 22, ¢;} — ciq; < Vi, ¢, v;) < min{aw?, pigi} — ciqs = Ui(ov, g, v;).

Replacing ¥, (o, ¢;,v;) with L;(a, q;,v;) (resp., Ui(a,qi,v;)) in problem (EC.34), we then obtain a
lower bound (resp., upper bound) of problem (EC.34). The resulting problems inherit a similar
structure to problem (EC.36), and hence can be approximately solved via the quadratic decision

rules or semi-definite programming relaxations (Hanasusanto et al. 2015, Natarajan and Teo 2017).
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