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Abstract

Accurate approximation of complex nonlinear functions is a fundamental challenge across
many scientific and engineering domains. Traditional neural network architectures often struggle
to capture intricate patterns and irregularities present in high-dimensional functions. This paper
introduces the Chebyshev Kolmogorov-Arnold Network (Chebyshev KAN), a novel approach
that combines the theoretical foundations of the Kolmogorov-Arnold Theorem with the powerful
approximation capabilities of Chebyshev polynomials.



1 Introduction

The ability to accurately approximate complex nonlinear functions is a fundamental challenge in many areas of
science, engineering, and artificial intelligence. Traditional neural network architectures, while powerful, often
struggle to capture intricate patterns and irregularities in high-dimensional functions. This paper introduces
a novel approach called the Chebyshev Kolmogorov-Arnold Network (Chebyshev KAN), which leverages theo-
retical principles from approximation theory to construct efficient neural network layers tailored for nonlinear
function approximation. The core idea behind the Chebyshev KAN is to combine the Kolmogorov-Arnold Theo-
rem from approximation theory [2] [3, @]with the powerful approximation capabilities of Chebyshev polynomials.
The Kolmogorov-Arnold Theorem states that any continuous multivariate function on a bounded domain can
be represented as a superposition (composition) of a limited number of univariate functions and a set of linear
operations. This theorem provides a theoretical foundation for approximating complex functions by breaking
them down into simpler components. Chebyshev polynomials, on the other hand, are a sequence of orthogonal
polynomials that exhibit excellent properties for function approximation, such as uniform convergence, rapid
convergence, and efficient recursive computation. By combining the Kolmogorov-Arnold Theorem’s theoretical
guarantee with the approximation power of Chebyshev polynomials, the Chebyshev KAN offers a principled and
efficient approach to nonlinear function approximation. The paper provides a detailed mathematical explanation
of the implementation of the Chebyshev KANs and the results of various experiments we conducted.

1.1 Kolmogorov-Arnold Theorem

The Kolmogorov-Arnold Theorem, also known as the Superposition Theorem or the Kolmogorov-Arnold Repre-
sentation Theorem, is a fundamental result in approximation theory. It states that any continuous multivariate
function on a bounded domain can be represented as a superposition (composition) of a limited number of
one-variable (univariate) functions and a set of linear operations.

Formally, for a continuous function f : [0, 1]%n — Rut on the d;,-dimensional unit hypercube [0, 1]%» the
Kolmogorov-Arnold Theorem guarantees the existence of continuous univariate functions g, and 1, 4 such that:

2din din
f(x) = qu ( ¢p,q(xp)> (1)
q=0 p=1

where x = (21, 22,...,24,,)-

1.2 Chebyshev Polynomials

Chebyshev polynomials are a sequence of orthogonal polynomials that play a crucial role in approximation
theory[10, [IT], [7] and numerical analysis. They are defined on the interval [—1,1] and satisfy the recurrence
relation:

To(z) =1 (2)
Ti(z)=x (3)
To(x) =22Ty—1(x) — Th—o(x), n>2 (4)

To(z) =1 (5)
Ti(z)==x (6)
To(z) =222 — 1 (7)
Ts(z) = 42° — 3z (8)
Ty(x) = 8zt — 822 +1 (9)

Chebyshev polynomials have several desirable properties that make them well-suited for function approxi-
mation:



e Orthogonality: The Chebyshev polynomials are orthogonal with respect to the weight function w(z) =
\/1177 on the interval [—1, 1]. This property ensures that the coefficients in the polynomial approximation
are uncorrelated, which can improve numerical stability and convergence.

e Uniform Approximation: Chebyshev polynomials provide a uniform approximation of continuous functions
on the interval [—1,1]. This means that the maximum approximation error is minimized compared to
other polynomial approximations of the same degree.

e Rapid Convergence: The approximation error of a continuous function using Chebyshev polynomials
decreases rapidly as the degree of the polynomials increases, typically faster than other polynomial bases.

e Recursive Computation: The recurrence relation for Chebyshev polynomials allows for efficient computa-
tion and evaluation, which is particularly advantageous in numerical implementations.

These properties make Chebyshev polynomials an excellent choice for function approximation tasks

1.3 The Chebyshev Kolmogorov-Arnold Network

The Chebyshev Kolmogorov-Arnold Network (Chebyshev KAN) is a novel approach to function approximation[4]
6], combining the theoretical foundations of the Kolmogorov-Arnold Theorem with the powerful approximation
capabilities of Chebyshev polynomials.

In the Chebyshev KAN;, the target multivariate function f(x) is approximated using a single layer of Cheby-
shev interpolation:

fx) = Z > 0,xTk(3)) (10)

where X = tanh(x) is the normalized input tensor, Tj(Z;) is the k-th Chebyshev polynomial evaluated at Z;,
n is the degree of the Chebyshev polynomials, and ©@ € R%n»*dowx(n+1) are the learnable coefficients for the
Chebyshev interpolation.

This formulation approximates the target function f(x) directly as a weighted sum of Chebyshev polyno-
mials, leveraging the Kolmogorov-Arnold Theorem’s guarantee of the existence of a superposition of univariate
functions to represent any continuous multivariate function.

2 The Chebyshev Kolmogorov-Arnold Network Layer

The Chebyshev Kolmogorov-Arnold Network (Chebyshev KAN) layer is a novel approach to function approx-
imation, inspired by the Kolmogorov-Arnold Theorem and leveraging the expressive capabilities of Chebyshev
polynomials. This section provides a detailed mathematical explanation of the Chebyshev KAN layer imple-
mentation, including tensor operations and illustrative examples.

2.1 Input Normalization

Since Chebyshev polynomials are defined on the interval [—1, 1], the first step in the Chebyshev KAN layer’s
forward pass is to normalize the input tensor X € RN *dn to this range, where N is the batch size, and dj, is the
input dimension. This is achieved by applying the hyperbolic tangent function tanh(z) =
to the input tensor:

eT—e~ %

e clement-wise

Xnorm = tanh(X)
For example, consider an input tensor X with shape (2,2), representing two input samples with two features
each:
0.5 —1.0
X= (2.0 0.3 )
Applying the hyperbolic tangent function element-wise, we obtain the normalized input tensor X,,orm:

Xporm = tanh(X) = (0.4621 —0.7616)

0.9640  0.2913



By normalizing the input tensor, we ensure that the subsequent computations involving Chebyshev polynomials
are well-defined and accurately capture the function approximation within the [—1, 1] interval.

2.2 Chebyshev Polynomial Computation

After normalizing the input tensor, the next step is to compute the values of the Chebyshev polynomials up to
the specified degree n for each input dimension and batch sample[8, [9]. This computation is performed using
the recurrence relation for Chebyshev polynomials:

To(l‘) =1
Ti(z)=x
To(z) =22T_1(x) — Th—o(x), n>2
To compute the Chebyshev polynomials, we initialize a tensor T € RN*dnx(n+1) 5 store the values of the

polynomials for each input dimension and batch sample. The first two columns of this tensor are initialized
with the constant term Tp(z) = 1 and the first-degree term 77 (x) = z, respectively:

PSR B .1 (0.4621 —0.7616
T[""O]_(l 1>’ T[""l]_<0.9640 0.2913>

The remaining columns of T" are computed recursively using the recurrence relation:
T [:,:,n} =2Xnorm © T [:,:,n— 1] =T [:,:,n—?} , n>2

where ® denotes the element-wise product between tensors. For example, let’s assume we want to compute the
Chebyshev polynomials up to degree n = 3. The computation would proceed as follows:

~0.5758 —0.1605
1 [12) = 2o T 1] - T 0] = (e 0 1000)
—0.8537  0.5508
T[:43] = 2Xnom OT [1,5,2] =T [1,:,1] = ( 0.8672 —0.6960)

After these computations, the tensor T will contain the values of the Chebyshev polynomials Ty(x), T1(x),
T5(z), and T5(x) for each input dimension and batch sample:

1.0000 0.4621 —0.5758 —0.8537
1.0000 —-0.7616 —0.1605 0.5508
1.0000 09640  0.8576  0.8672
1.0000 0.2913 —0.8298 —0.6960

This tensor T" will be used in the next step to compute the Chebyshev interpolation and approximate the target
function.

2.3 Chebyshev Interpolation

The final step in the Chebyshev KAN layer’s forward pass is to compute the Chebyshev interpolation, which
is the weighted sum of the Chebyshev polynomials using the learnable coefficients © € R%n*douex(n+1) = The
Chebyshev interpolation is computed as follows:

n  din

Y = ZZT [:,j7 k] © 0.k

k=0 j=1

where Y € RV*Xdout is the output tensor representing the approximation of the target function, and ® denotes
the element-wise product between tensors.

To better understand this computation, let’s consider an example with dj, = 2 (two input dimensions),
dous = 1 (one output dimension), and n = 2 (Chebyshev polynomials up to degree 2). The learnable coefficients

© could be:
o_ (01 02 03
—\04 05 0.6



The Chebyshev interpolation would then be computed as:

2 2
Y=Y Y "T[jkl ©6;.x

k=0 j=1

= (T[:,1,00 @010+ T [:,2,0] © O2)
+(T[11] 0011 +T[:,2,1] ©02,)
+(T[:1,2] 012+ T [:,2,2] © )

(10X 01+1.0x04
“\10x01+1.0x04

0.4621 x 0.2 + (—0.7616) x 0.5
0.9640 x 0.2 4+ 0.2913 x 0.5

L ((-0-5758) x 0.3+ (~0.1605) x 0.6
0.8576 x 0.3 + (—0.8298) x 0.6

(0.5 —0.2385 —0.2769

- (0.5) * < 0.2789 > + (—0.1279)

_(0.0346

o (0.6010)
In this example, the Chebyshev KAN layer approximates the target function by computing a weighted sum of
the Chebyshev polynomials up to degree 2, using the learnable coefficients ©. The resulting output tensor Y
has shape (2,1), representing the approximated function values for the two input samples. The key steps in
this computation are:

Compute the element-wise product T’ [:, 7y k] ©® 0;,.  for each input dimension j and polynomial degree k.
This gives the weighted Chebyshev polynomial values for each input dimension and output dimension. Sum the
weighted Chebyshev polynomial values across input dimensions and degrees to obtain the final approximation
Y.

By learning the appropriate values of the coefficients © during the training process, the Chebyshev KAN
layer can approximate a wide range of continuous functions, as guaranteed by the Kolmogorov-Arnold Theorem.

2.4 Training and Optimization

The Chebyshev KAN layer is trained by optimizing the learnable coefficients © to minimize a loss function £
between the predicted output Y and the true output Yirue:

N
1
E(G)) = N Zz(}/ivy;;rue,z)
i=1

where £ is a suitable loss function (e.g., mean squared error for regression tasks, cross-entropy for classification
tasks), and N is the batch size. The gradients[14] of the loss with respect to the learnable coefficients © are
computed using backpropagation:

oL 1%8@(1@,%8,» aY;

9 N&= 9y, 00
The partial derivative ‘3}(;" can be computed using the chain rule and the Chebyshev interpolation formula:
) )
56 = 2 2Tk gy — (Oic)
k=0 j=1 Jo%

Once the gradients are computed, the coefficients © are updated using an optimization algorithm, such as
stochastic gradient descent (SGD) or its variants:

@e@—n%



where 7 is the learning rate. This training process is repeated for multiple epochs, iterating over [I} [I6]the
training dataset and updating the coefficients © to minimize the loss function and improve the approximation
of the target function. The Chebyshev KAN can be applied to various function approximation tasks, including
regression, classification, and time series forecasting, across diverse domains such as finance, physics, engineering,
and computational biology. It is particularly suitable for scenarios where the target function exhibits complex
nonlinear behavior and traditional neural network architectures struggle to capture the underlying patterns
accurately.

Additionally, the Chebyshev KAN layer can be incorporated into more complex neural network architectures,
such as convolutional neural networks or recurrent neural networks, to enhance their function approximation
capabilities for specific applications.

2.5 Ablation Studies

In this study, we conducted ablation experiments to evaluate the impact of various factors on the performance
of the Chebyshev Kolmogorov-Arnold Network (Chebyshev KAN) model for the task of image classification
on the MNIST dataset[15]. The model architecture used in these experiments consists of three Chebyshev
KAN layers followed by Layer Normalization layers to avoid gradient vanishing caused by the tanh activation
function[I2]. The model’s hyperparameters, such as the degree of Chebyshev polynomials and the type of input
normalization, were systematically varied to assess their influence on the model’s accuracy.

2.5.1 Degree of Chebyshev Polynomials

We investigated the effect of varying the degree of Chebyshev polynomials on the model’s accuracy. The
degree determines the complexity of the polynomial approximation used in the Chebyshev KAN layer. We
experimented with degrees ranging from 2 to 5 and observed the resulting accuracy on the MNIST test set. The
results, presented in Table 1, indicate that increasing the degree generally improves accuracy up to a certain
point.

Degree | Accuracy | Total Trainable Parameters
2 0.9697 77,376
3 0.9718 103,136
4 0.9553 128,896
5 0.9646 154,656

Table 1: Degree Accuracy and Total Trainable Parameters

As shown in Table 1, increasing the degree of Chebyshev polynomials from 2 to 3 leads to a slight improve-
ment in accuracy, while further increasing the degree to 4 results in a significant drop in performance. Finally,
increasing the degree to 5 yields a modest improvement in accuracy compared to a degree of 2 polynomial,
but it is still lower than the accuracy achieved with a degree 3 polynomial. This observation suggests that
a polynomial of degree 3 offers a good balance between model complexity and generalization ability for the
MNIST dataset.

2.5.2 Input Normalization

We also investigated the effect of different input normalization techniques on the model’s accuracy. We compared
the performance of the MNIST-KAN model when using tanh normalization, Min-Max Scaling, and Standardiza-
tion. The results, presented in Table 2, indicate that tanh normalization and Min-Max Scaling achieve similar
accuracy, while Standardization performs slightly better.

Normalization | Accuracy
Tanh 0.9680
Min-Max Scaling 0.9683
Standardization 0.9692

Table 2: Normalization Accuracy
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Figure 1: This figure shows the training and test loss curves for each degree over 20 epochs

In Table 2, we can observe that tanh normalization and Min-Max Scaling yield comparable results, with
both achieving an accuracy of around 96.8%. This suggests that these normalization techniques are effective in
preprocessing the input data for the Chebyshev KAN model. However, Standardization outperforms both tanh
normalization and Min-Max Scaling, achieving an accuracy of 96.92%.
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—— Test Loss (Tanh)

—— Train Loss (Min-Max Scaling)
— Test Loss (Min-Max Scaling)

— Train Loss (Standardization)
—— Test Loss (Standardization)

0.8

0.4

0.2

0.0 1

T T T T T
2.5 5.0 1.5 10.0 12.5 15.0 17.5 20.0
Epochs

Figure 2: This figure shows the training and test loss curves for each normalization method over 20 epochs

3 Experiments and Results

In this section, we evaluate the performance of the Chebyshev Kolmogorov-Arnold Network (Chebyshev KAN)
model on a complex fractal-like 2D function[I7]. The experiments are designed to assess the model’s ability to
capture intricate patterns and irregularities in high-dimensional functions, which is a fundamental challenge in
many areas of science, engineering, and artificial intelligence.



3.1 Fractal-like 2D Function

To further evaluate the performance of the Chebyshev KAN model on complex functions, we generated a fractal-
like 2D function using a combination of trigonometric functions, absolute values, and noise. The fractal function
is defined as follows:

def fractal_function(x, y):
z = np.sin(10 * np.pi * x) * np.cos(10 * np.pi * y) + np.sin(np.pi * (x**2 + y**2))
z += np.abs(x - y) + (np.sin(6 * x * y) / (0.1 + np.abs(x + y)))
z *= np.exp(-0.1 * (x**2 + y*%2))

# Add noise to z

noise = np.random.normal(0, 0.1, z.shape)
z += noise

return z

We created a dataset by uniformly sampling 100 points in the range [0,2] for both z and y, resulting in a
100 x 100 grid of function values from the fractal function. The dataset was not explicitly split into training
and testing sets in the provided code.

Chebyshev KAN Model Predictions Original Fractal Function

Figure 3: This figure shows the predictions of a Chebyshev KAN model for a fractal-like 2D function. The
fractal-like function is generated using a combination of trigonometric functions, absolute values, and noise,
resulting in a complex and irregular structure that is difficult to approximate using traditional neural network
architectures.

The ChebyKAN model has three layers that transform the input data step-by-step. The first layer takes
the 2D input coordinates (z,y) and maps them to 8 output features using Chebyshev polynomials of degree 8.
This allows capturing complex patterns in the input. The second layer takes the 8 output features from the
first layer and maps them to 16 output features using Chebyshev polynomials of a lower degree 4, refining the
learned representation. The third and final layer takes the 16 output features from the second layer and maps
them to a single output, which is the predicted function value, using Chebyshev polynomials of degree 4. The
degree of the Chebyshev polynomials in each layer controls the complexity of the mapping function learned.
Higher degrees allow more complex mappings but increase the risk of overfitting. We trained the Chebyshev
KAN model for 2,000 epochs using the Adam optimizer with a learning rate of 0.01. The losses obtained during
the training process of ChebyKAN models were recorded.

Figure 2 shows the predictions of the Chebyshev KAN model for the fractal-like 2D function. The model
successfully captures the intricate patterns and irregularities present in the function, demonstrating its ability
to approximate complex high-dimensional functions.

In summary, tests on a complex 2D function showed that the Chebyshev KAN model is very good at
understanding complicated patterns and details in functions with many dimensions. The model did really well
with a dataset of a fractal-like 2D function, showing it has a lot of promise for tasks that involve estimating
functions in various areas. In the future, researchers might look into using different ways to adjust the model



or combining several methods to make it even better. Also, combining the Chebyshev KAN model with more
complex types of neural networks, like those used for image recognition or processing language, could lead
to new and innovative ways to estimate functions. This could be useful in a wide range of fields, including
computer vision, language understanding, and creating new content.

4 Future Directions

While the Chebyshev KAN layer presents a promising approach to function approximation, several avenues for
further research and development remain:

e Alternative Basis Functions: Exploring alternative basis functions or combinations of basis functions,
beyond Chebyshev polynomials, could potentially lead to improved approximation accuracy or computa-
tional efficiency for certain classes of functions.

e Adaptive Degree Selection: Developing techniques for automatically determining the appropriate degree
of Chebyshev polynomials or other basis functions based on the complexity of the target function could
enhance the flexibility and generalization capabilities of the Chebyshev KAN layer.

e Regularization and Training Strategies: Investigating effective regularization techniques and training
strategies tailored to the Chebyshev KAN layer’s architecture could improve convergence, generalization,
and robustness in practical applications.

e Integration with Other Neural Network Architectures: Combining the Chebyshev KAN layer with other
neural network architectures, such as attention mechanisms or generative models, could lead to novel
hybrid approaches for function approximation and open up new applications in fields like computer vision,
natural language processing, and generative modeling.

e Theoretical Analysis: Conducting further theoretical analyses of the Chebyshev KAN layer’s approxima-
tion properties, computational complexity, and convergence behavior could provide valuable insights and
guide future developments in this area.

Overall, the Chebyshev KAN layer represents a promising step towards leveraging theoretical foundations
and efficient approximation techniques in the field of machine learning, paving the way for more interpretable
and resource-efficient function approximation models.

A significant amount of research is currently being conducted in the field of function approximation using
the Kolmogorov-Arnold Network (KAN) architecture. The KAN offers a promising alternative to traditional
Multi-Layer Perceptron (MLP) models, with the added advantage of increased interpretability due to its the-
oretical foundations in the Kolmogorov-Arnold Theorem and the use of Chebyshev polynomials as a basis for
approxzimation. The flexibility and principled approach of the KAN architecture open up numerous possibili-
ties for its integration into various neural network architectures, such as Transformers, Convolutional Neural
Networks (CNNs), and others. Researchers are actively exploring the development of KAN-based architec-
tures tailored for diverse applications across various domains. As research in this area continues to progress,
the KAN has the potential to emerge as a formidable rival to the widely-used MLP, offering a more inter-
pretable and resource-efficient solution for nonlinear function approximation tasks. We have implemented
the Chebyshev KAN in a publicly available Python package hosted on the Python Package Index (PyPI):
https: //pypi. orq/project/Deep-KAN/ .
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