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Spaces of non-resultant systems of

real bounded multiplicity determined

by a toric variety

Andrzej Kozlowski∗ and Kohhei Yamaguchi†

Abstract

For each field F and positive integers m,n, d with (m,n) 6= (1, 1),
Farb and Wolfson [13] defined the certain affine variety Polyd,mn (F)
as generalizations of spaces first studied by Arnold, Vassiliev, Segal
and others. As a natural generalization, for each fan Σ and r-tuple
D = (d1, · · · , dr) of positive integers, the authors [26] also defined and
considered a more general space PolyD,Σ

n (F), where r is the number
of one dimensional cones in Σ. This space can also be regarded as a
generalization of the space Hol∗D(S

2,XΣ) of based rational curves from
the Riemann sphere S2 to the toric variety XΣ of degree D, where XΣ

denotes the toric variety (over C) corresponding to the fan Σ.
In this paper, we define a space QD,Σ

n (F) (F = R or C) which its
real analogue and which can be viewed as a generalization of spaces
considered by Arnold, Vassiliev and others in the context of real sin-
gularity theory. We prove that homotopy stability holds for this space
and compute the stability dimension explicitly.

1 Introduction

1.1 Historical survey. For a complex manifold X , let Map∗(S2, X) =
Ω2X (resp. Hol∗(S2, X)) denote the space of all based continuous maps
(resp. based holomorphic maps) from the Riemann sphere S2 to X . The
relationship between the topology of the space Hol∗(S2, X) and that of the
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space Ω2X has played a significant role in several different areas of geometry
and mathematical physics (e.g. [2], [5]). In particular there arose the question

whether the inclusion Hol∗(S2, X)
⊂−→ Ω2X is a homotopy equivalence (or

homology equivalence) up to a certain dimension, which we will refer to as
the stability dimension. Since G. Segal [31] studied this problem for the case
X = CPm, a number of mathematicians have investigated various closely
related ones (e.g. [1], [15], [17], [22], [23], [27], [28], [29]).

Similar stabilization results appeared in the work of Arnold ([3], [4]), and
Vassiliev ([32], [33]) in connection with singularity theory. They considered
spaces of polynomials without roots of multiplicity greater than a certain nat-
ural number. These spaces are examples of “complement of discriminants”
in Vassiliev’s terminology [32] (cf. [20]).

Inspired by these results, Farb and Wolfson [13] introduced a new family
of spaces Polyd,mn (F), which is defined for every field F and integersm,n, d ≥ 1
with (m,n) 6= (1, 1). The present authors generalised this further in [26],
by considering a fan Σ (or toric variety) and a field F, and define a space
PolyD,Σ

n (F) as follows.

Definition 1.1 ([26]). Let F be a field with its algebraic closure F, and let
Σ be a fan in Rm such that Σ(1) = {ρ1, · · · , ρr}, where Σ(1) denotes the
set of all one dimensional cones in Σ as in (2.7).1 Let XΣ denote the toric
variety over C associated to the fan Σ, and let N denote the set of all positive
integers.

For each r-tuple D = (d1, · · · , dr) ∈ Nr, let PolyD,Σ
n (F) denote the space

of all r-tuples (f1(z), · · · , fr(z)) ∈ F[z]r of F-coefficients monic polynomials
satisfying the following two conditions (1.1a) and (1.1b):

(1.1a) fi(z) ∈ F[z] is an F-coefficients monic polynomial of the degree di for
each 1 ≤ i ≤ r.

(1.1b) For each σ = {i1, · · · , is} ∈ I(KΣ), polynomials fi1(z), · · · , fis(z) have
no common root α ∈ F of multiplicity ≥ n.

Here, KΣ denotes the underlying simplicial complex of the fan Σ on
the index set [r] = {1, 2, · · · , r} defined by (2.8), and I(KΣ) is the set
I(KΣ) = {σ ⊂ [r] : σ 6∈ KΣ} as in (2.2).

Remark 1.2. (i) By using the classical theory of resultants, one can show
that PolyD,Σ

n (F) is an affine variety over F and that it is the complement of
the set of solutions of a system of polynomial equations (called a generalized

1Precise definitions and a description of the notation related to toric varieties and their
fans will be given in §2.
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resultant) with integer coefficients. For this reason, we call it the space of
non-resultant systems of bounded multiplicity determined by a toric variety.

(ii) Note that

(1.1) PolyD,Σ
n (C) = Hol∗D(S

2, XΣ) if n = 1 and
∑r

k=1 dknk = 0m,

where Hol∗D(S
2, XΣ) denotes the space of based rational curves of of degree

D on X (i.e. rational maps of degree D from the Riemann surface S2 to
XΣ) (see [23] for further details). Thus, the space PolyD,Σ

n (C) can be also
regarded as a generalization of the space Hol∗D(S

2, XΣ).

Now recall the following homotopy stability result.

Theorem 1.3 ([26]). Let D = (d1, · · · , dr) ∈ Nr, n ≥ 2, and let XΣ be an
m dimensional simply connected non-singular toric variety over C such that
the condition (2.18)∗ holds.

(i) If
∑r

k=1 dknk = 0m, then the natural map

iD : PolyD,Σ
n (C)→ Ω2

DXΣ(n) ≃ Ω2
0XΣ(n) ≃ Ω2ZKΣ

(D2n, S2n−1)

is a homotopy equivalence through dimension dpoly(D; Σ, n).
(ii) If

∑r
k=1 dknk 6= 0m, there is a map

jD : PolyD,Σ
n (C)→ Ω2ZKΣ

(D2n, S2n−1)

which is a homotopy equivalence through dimension dpoly(D; Σ, n).

Here, we denote by ⌊x⌋ the integer part of a real number x. Moreover, let
dmin = min{d1, · · · , dr} and rmin(Σ) denote positive integers given by (2.35),
and let dpoly(D; Σ, n) denote the positive integer defined by2

(1.2) dpoly(D; Σ, n) = (2nrmin(Σ)− 3)⌊dmin/n⌋ − 2.

1.2 Basic definitions. In this paper, we replace the space PolyD,Σ
n (F) by

its real analogue QD,Σ
n (F) for F = C or R. Its formal definition is below.

Definition 1.4. Let Σ be a fan in Rm such that Σ(1) = {ρ1, · · · , ρr}, where
Σ(1) denotes the set of all one dimensional cones in Σ as in Definition 1.1.

For each r-tuple D = (d1, · · · , dr) ∈ Nr and K = C or R, let QD,Σ
n (K)

denote the space of all r-tuples (f1(z), · · · , fr(z)) ∈ K[z]r of K-coefficients
monic polynomials satisfying the following two conditions (1.2a) and (1.2b):

2Note that the spaces XΣ(n) and ZK(X,A) are the orbit space and the polyhedral
product of a pair (X,A) given by (2.12) and Definition 2.3, respectively.
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(1.2a) For each 1 ≤ i ≤ r, fi(z) ∈ K[z] is an K-coefficients monic polynomial
of the degree di.

(1.2b) For each σ = {i1, · · · , is} ∈ I(KΣ), polynomials fi1(z), · · · , fis(z) have
no common real root α ∈ R of multiplicity ≥ n (but may have a
common root α ∈ C \ R of any multiplicity).

Note that the following inclusion holds:

(1.3) PolyD,Σ
n (K) ⊂ QD,Σ

n (K) for K = R or C.

Recall that the space QD,Σ
n (C) was already investigated for the case n = 1 in

[24],3 and that the space QD,Σ
n (K) was already extensively studied in [25] for

the the case (XΣ, D) = (CPm−1, Dm(d)),
4 where Dm(d) ∈ Nm denotes the

m-tuple of positive integers defined by

(1.4) Dm(d) = (d, d, · · · , d) (m-times).

1.3 The main results. In this paper we will study the homotopy type
of the space QD,Σ

n (K) for K = C or R. In particular, we will show that
Atiyah-Jones-Segal type homotopy stability holds for the space QD,Σ

n (K).

In our result we will need the following two conditions (1.4)∗ and (1.4)†:5

(1.4)∗ dmin ≥ n ≥ 1.

(1.4)† dmin ≥ n ≥ 1 and (n, rmin(Σ)) 6= (1, 2).

Let d(D; Σ, n,K) denote the positive integer defined by

(1.5) d(D; Σ, n,K) =

{

(2nrmin(Σ)− 2)⌊dmin/n⌋ − 2 if K = C,

(nrmin(Σ)− 2)⌊dmin/n⌋ − 2 if K = R.

Then we can state the main result of this article as follows.

Theorem 1.5 (Theorems 2.14 and 2.15). Let n ∈ N, let D = (d1, · · · , dr) ∈
Nr, and let XΣ be an m dimensional simply connected non-singular toric
variety satisfying the condition (2.18)∗.

3It is written as Pol∗D(S1, XΣ) = QD,Σ
n (C) if n = 1 in [24].

4It is written as Qd,m
n (K) = QD,Σ

n (K) in [25] for (XΣ, D) = (CPm−1, Dm(d)).
5If the condition (1.4)∗ (resp. (1.4)†) is satisfied, the space QD,Σ

n (C) (resp. QD,Σ
n (R)) is

simply connected (see Corollary 7.3). Moreover, if the condition (1.4)∗ or (1.4)† is satisfied,
the condition ⌊dmin/n⌋ ≥ 1 holds. Thus, d(D; Σ, n,K) ≥ 1 and the main results (Theorem
1.5, Corollary 2.17) are not vacuous. Note that the condition (1.4)∗ holds if the condition
(1.4)† is satisfied.
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(i) If the condition (1.4)∗ is satisfied, the map (given by (2.25) and (10.1))

jD,n,C : QD,Σ
n (C)→ ΩZKΣ

(D2n, S2n−1)

is a homotopy equivalence through dimension d(D; Σ, n,C).
(ii) If the condition (1.4)† is satisfied, the map (given by (2.30) and (10.3))

jD,n,R : QD,Σ
n (R)→ ΩZKΣ

(Dn, Sn−1)

is a homotopy equivalence through dimension d(D; Σ, n,R).

Remark 1.6. (i) Recall that a map g : V → W is called a homology (resp.
homotopy) equivalence through dimension N if the induced homomorphism
g∗ : Hk(V ;Z) → Hk(W ;Z) (resp. g∗ : πk(V ) → πk(W )) is an isomorphism
for all k ≤ N .

(ii) Similarly, when G is a topological group and a map g : V → W is
a G-equivariant map between G-spaces V and W , the map g is called a G-
equivariant homology (resp. G-equivariant homology homotopy) equivalence
through dimension N if the restriction gH = g|V H : V H → WH is a homology
(resp. homotopy) equivalence through dimension N for any subgroupH ⊂ G.
Here, for each G-space X and a subgroup H ⊂ G, let XH denote the H-fixed
subspace of X defined by

(1.6) XH = {x ∈ X : h · x = x for any h ∈ H}.

1.4 Organization. This paper is organized as follows. In §2 we recall the
basic definitions and facts which is needed for the statements of the results
of this article. After then precise statements of the main results (Theorems
2.14, 2.15, and Corollary 2.16) are stated. In §3 we recall several basic facts
related to polyhedral products and toric varieties. In §4, we summarize the
definition of the non-degenerate simplicial resolution, and we construct the
Vassiliev spectral sequence. In §5 we define the stabilization maps, and in
§6, we construct the truncated spectral sequence induced from the spectral
sequence obtained in §4. By using this truncated spectral sequence, we shall
prove the homology stability result (Theorems 6.5, 6.8, and Corollary 6.6). In
§7 we investigate about the connectivity of the space QD,Σ

n (K). In particular,
we prove that the space QD,Σ

n (C) (resp. QD,Σ
n (R)) is simply connected if the

condition (1.4)∗ (resp. (1.4)†) is satisfied. In §8 we consider the configuration
model for the space QD,Σ

n (K) and recall the stabilized horizontal scanning
map (see Theorem 8.7). In §9 we prove the stability result (Theorem 9.2),
and in §10 we give the proofs of the main results (Theorems 2.14, 2.15, and
Corollary 2.16) by using it.
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2 Toric varieties and the main results

In this section we recall several basic definitions and facts related to toric
varieties (convex rational polyhedral cones, toric varieties, a fan of toric
variety, polyhedral products, homogenous coordinate, rational curves on a
toric variety etc). Then by using these definitions and notations we give
precise statements of the main results of this paper. From now on, we al-
ways assume that K = C or R. Moreover, if dmin < n, ⌊dmin/n⌋ = 0 and
d(D; Σ, n,K) = −2 < 0. So we also assume that dmin ≥ n ≥ 1.

2.1 Fans, toric varieties and Polyhedral products. A convex rational
polyhedral cone in Rm is a subset of Rm of the form

(2.1) σ = Cone(S) = Cone(m1, · · · ,ms) =

{

s
∑

k=1

λkmk : λk ≥ 0

}

for a finite set S = {m1, · · · ,ms} ⊂ Zm. The dimension of σ is the dimen-
sion of the smallest subspace of Rm which contains σ. A convex rational
polyhedral cone σ is called strongly convex if σ ∩ (−σ) = {0m}, where we
set 0m = 0 = (0, 0, · · · , 0) ∈ Rm. A face τ of a convex rational polyhedral
cone σ is a subset τ ⊂ σ of the form τ = σ ∩ {x ∈ Rm : L(x ) = 0} for some
linear form L on Rm, such that σ ⊂ {x ∈ Rm : L(x) ≥ 0}. Note that if σ is
a strongly convex rational polyhedral cone, so is any of its faces.6

Definition 2.1. Let Σ be a finite collection of strongly convex rational poly-
hedral cones in Rm.

(i) The set Σ is called a fan (in Rm) if the following two conditions hold:

(2.1a) Every face τ of σ ∈ Σ belongs to Σ.

(2.1b) If σ1, σ2 ∈ Σ, σ1 ∩ σ2 is a common face of each σk and σ1 ∩ σ2 ∈ Σ.

(ii) An m dimensional irreducible normal variety X (over C) is called a
toric variety if it has a Zariski open subset Tm

C = (C∗)m and the action of
Tm
C on itself extends to an action of Tm

C on X .
The most significant property of a toric variety is that it is characterized

up to isomorphism entirely by its associated fan Σ. We denote by XΣ the
toric variety associated to a fan Σ (see [11] for the details).

(iii) Let K be some set of subsets of [r]. Then the set K is called an
abstract simplicial complex on the index set [r] if the following condition
(†)K holds:

6When S is the emptyset ∅, we set Cone(∅) = {0m} and we may also regard it as one
of strongly convex rational polyhedral cones in Rm.
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(†)K τ ⊂ σ and σ ∈ K, then τ ∈ K.

Remark 2.2. (i) It is well known that there are no holomorphic maps CP1 =
S2 → Tm

C except the constant maps, and that the fan Σ of Tm
C is Σ = {0m}.

Hence, without loss of generality we always assume that XΣ 6= Tm
C , and that

any fan Σ in Rm satisfies the condition {0m} $ Σ.
(ii) In this paper by a simplicial complex K we always mean an abstract

simplicial complex, and we always assume that a simplicial complex K con-
tains the empty set ∅.

Definition 2.3. Let K be a simplicial complex on the index set [r] =
{1, 2, · · · , r}, and let (X,A) be a pairs of based spaces.

(i) Let I(K) denote the collection of subsets σ ⊂ [r] defined by

(2.2) I(K) = {σ ⊂ [r] : σ /∈ K}.

(ii) Define the polyhedral product ZK(X,A) with respect to K by

ZK(X,A) =
⋃

σ∈K

(X,A)σ, where(2.3)

(X,A)σ = {(x1, · · · , xr) ∈ Xr : xk ∈ A if k /∈ σ}.

(iii) For each subset σ = {i1, · · · , is} ⊂ [r], let Lσ(Kn) denote the sub-
space of Knr defined by

Lσ(Kn) = {(x 1, · · · , x r) ∈ (Kn)r = Knr : x i1 = · · · = x is = 0n}(2.4)

and let LK
n (K) denote the subspace of Knr defined by

(2.5) LK
n (K) =

⋃

σ∈I(K)

Lσ(Kn) =
⋃

σ⊂[r],σ/∈K

Lσ(Kn).

Then it is easy to see that

(2.6) ZK(Kn, (Kn)∗) = Knr \ LK
n (K), where (Kn)∗ = Kn \ {0n}.

2.2 Homogenous coordinates. Next we recall the basic facts about ho-
mogenous coordinates on toric varieties.

Definition 2.4. Let Σ be a fan in Rm such that {0m} $ Σ, and let

(2.7) Σ(1) = {ρ1, · · · , ρr}

denote the set of all one dimensional cones in Σ.
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(i) For each 1 ≤ k ≤ r, we denote by nk ∈ Zm the primitive generator of
ρk, such that ρk ∩ Zm = Z≥0 · nk. Note that ρk = Cone(nk).

(ii) Let KΣ denote the underlying simplicial complex of Σ defined by

(2.8) KΣ =
{

{i1, · · · , is} ⊂ [r] : n i1 ,n i2 , · · · ,n is span a cone in Σ
}

.

It is easy to see that KΣ is a simplicial complex on the index set [r].
(iii) Let GΣ,K ⊂ Tr

K = (K∗)r be the subgroup

(2.9) GΣ,K = {(µ1, · · · , µr) ∈ Tr
K :

r
∏

k=1

(µk)
〈nk,m〉 = 1 for all m ∈ Zm},

where 〈u , v〉 = ∑m
k=1 ukvk for u = (u1, · · · , um) and v = (v1, · · · , vm) ∈ Rm.

(iv) There is a natural GΣ,K-action on ZKΣ
(Kn, (Kn)∗) by coordinate-wise

multiplication,

(2.10) (µ1, · · · , µr) · (x 1, · · · , x r) = (µ1x 1, · · · , µrx r)

for ((µ1, · · · , µr), (x 1, · · · , x r)) ∈ GΣ,K ×ZKΣ
(Kn, (Kn)∗), where we set

(2.11) µx = (µx1, · · · , µxn) if (µ, x ) = (µ, (x1, · · · , xn)) ∈ K∗ ×Kn.

(v) Let XΣ,K(n) denote the corresponding orbit space

(2.12) XΣ,K(n) = ZKΣ
(Kn, (Kn)∗)/GΣ,K, where

(2.13) qn,K : ZKΣ
(Kn, (Kn)∗)→ XΣ,K(n) = ZKΣ

(Kn, (Kn)∗)/GΣ,K

denotes the corresponding canonical projection. In particular, we also write

(2.14) XΣ(n) = XΣ,C(n) and GΣ = GΣ,C if K = C.

Theorem 2.5 ([9], Theorem 2.1). If the set {nk}rk=1 of all primitive gener-
ators spans Rm (i.e.

∑r
k=1R · nk = Rm), there is a natural isomorphism

(2.15) XΣ
∼= ZKΣ

(C,C∗)/GΣ,C = XΣ(1) = XΣ,C(1).

Hence, we can identify XΣ(n) with the toric variety XΣ if n = 1.

Remark 2.6. Let Σ be a fan in Rm as in Definition 2.4. Then the fan Σ is
completely determined by the pair (KΣ, {nk}rk=1) (see [23, Remark 2.3] for
the details).
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For each 1 ≤ i ≤ r, let Fi = (f1;i, · · · , fn;i) ∈ K[z0, · · · , zs]n be an n-tuple
of homogenous polynomials of the same degree di satisfying the following
condition:

(2.16)∗ For each σ ∈ I(KΣ), the homogenous polynomials {fk;i}k∈σ have no
common real root except 0s+1 ∈ Rs+1.

In this situation, consider the map

(2.16) F = (F1, · · · , Fr) : Rs+1 \ {0s+1} → (Kn)r = Krn given by

{

F (x ) = (F1(x ), · · ·Fr(x )) for x ∈ Rm+1 \ {0m+1},
Fi(x ) = (f1;i(x ), f2;i(x ), · · · , fn;i(x )) for 1 ≤ i ≤ r.

By the assumption (2.16)∗, homogenous polynomials {fk;i}k∈σ have no com-
mon real root except 0s+1 ∈ Rs+1 for each 1 ≤ i ≤ r and σ ∈ I(KΣ). Thus,
we see that the image of the map F is contained in ZKΣ

(Kn, (Kn)∗), and we
may regard the map F as the map

(2.17) F = (F1, · · · , Fr) : Rs+1 \ {0s+1} → ZKΣ
(Kn, (Kn)∗).

The following lemma, whose proof we postpone until the end of §3, plays a
crucial role in the proof of the main result of this paper.

Lemma 2.7 (cf. [10], Theorem 3.1; [19], Lemma 2.6). Suppose that the set
{nk}rk=1 of all primitive generators spans Rm. For each 1 ≤ i ≤ r and σ ∈
I(KΣ), let Fi = (f1;i, · · · , fn;i) ∈ K[z0, · · · , zs]n be an n-tuple of homogenous
polynomials of the same degree di satisfying the condition (2.16)∗.

Then there is a unique map f : RPs → XΣ,K(n) such that the diagram

(2.18)

Rs+1 \ {0s+1}
(F1,··· ,Fr)−−−−−−→ ZKΣ

(Kn, (Kn)∗)

γs





y

qn,K





y

RPs f−−−→ ZKΣ
(Kn, (Kn)∗)/GΣ,K = XΣ,K(n)

is commutative if and only if the condition
∑r

k=1 dknk = 0m. holds.
Here, γs : Rs+1 \ {0s+1} → RPs denotes the canonical double covering,

and the map F = (F1, · · · , Fr) is given by (2.17).

2.3 Assumptions. From now on, let Σ be a fan in Rm as in Definition
2.4, and we always assume that XΣ is simply connected and non-singular.
Moreover, we shall assume the following condition holds.
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(2.18)∗ There is an r-tuple D∗ = (d∗1, · · · , d∗r) ∈ Nr such that
∑r

k=1 d
∗
knk = 0m.

Remark 2.8. (i) It follows from [11, Theorem 12.1.10] that XΣ is simply
connected if and only if the following condition (††) holds:
(††) The set {nk}rk=1 of all primitive generators spans Zm over Z, i.e.

∑r
k=1 Z · nk = Zm.

Thus we see that if XΣ is simply connected then the set {nk}rk=1 of all
primitive generators spans Rm. In particular, if XΣ is a compact smooth
toric variety then XΣ is simply connected (see Lemma 3.8).

(ii) We make the identification RP1 = S1 = R∪∞ and choose the points
∞ and [1, 1, · · · , 1] as the base points of RP1 and XΣ, respectively. Then,
by setting z = z0

z1
, for each 1 ≤ k ≤ r, we can view fk as a monic polynomial

fk(z) ∈ K[z] of degree dk in the real variable z.

2.4 Spaces of algebraic maps of real bounded multiplicity. Now we
can define the space of algebraic maps as follows.

Definition 2.9. From now on, let K = C or R as before.
(i) For a monic polynomial f(z) ∈ K[z] of degree d, let Fn(f)(z) denote

the n-tuple of monic polynomials of the same degree d defined by

(2.19) Fn(f)(z) = (f(z), f(z) + f ′(z), f(z) + f ′′(z), · · · , f(z) + f (n−1)(z)).

Note that a monic polynomial f(z) ∈ K[z] has a root α ∈ C of multiplicity
≥ n iff Fn(f)(α) = 0n ∈ Cn.

(ii) For each D = (d1, · · · , dr) ∈ Nr and a fan Σ in Rm, let QD,Σ
n (K)

denote the space of r-tuples (f1(z), · · · , fr(z)) ∈ K[z]r of K-coefficients monic
polynomials satisfying the conditions (1.2a) and (1.2b) (as in Definition 1.4).

Remark 2.10. (i) Note that QD,Σ
n (C) is path-connected, and that QD,Σ

n (R)
is path-connected if (n, rmin(Σ)) 6= (1, 2) (which will be explained in Remark
8.4).

(ii) Let Z2 = {±1} denote the multiplicative cyclic group of order 2, and
let XZ2 denote the Z2-fixed point set of a Z2-space X as in (1.6). Complex
conjugation on C extends to a Z2-actions on the spaces ZKΣ

(Cn, (Cn)∗) and
QD,Σ

n (C) such that

(2.20) ZKΣ
(Rn, (Rn)∗) = ZKΣ

(Cn, (Cn)∗)Z2 , QD,Σ
n (R) = QD,Σ

n (C)Z2 .

It is easy to see that complex conjugation on C also naturally extends to a
Z2-action on XΣ(n) = ZKΣ

(Cn, (Cn)∗)/GΣ such that

(2.21) XΣ,R(n) = XΣ(n)
Z2 .

10



It easily follows from the definition of the above actions that the following
diagram is commutative:

(2.22)

QD,Σ
n (R)

qn,R−−−→ XΣ,R(n) = ZKΣ
(Rn, (Rn)∗)/GΣ,R

iDn





y

∩ iXn





y

∩

QD,Σ
n (C)

qn,C−−−→ XΣ(n) = ZKΣ
(Cn, (Cn)∗)/GΣ,C

where let iDn and iXn denote he corresponding inclusion maps.
Remark that QD,Σ

n (C) (resp. QD,Σ
n (R)) is simply connected if the con-

dition (1.4)∗ (resp. (1.4)†) is satisfied (which will be proved in Corollary
7.3).

Definition 2.11. Suppose that the condition (2.18)∗ holds, and let D =
(d1, · · · , dr) ∈ Nr be an r-tuple of positive integers satisfying the condition

(2.23)

r
∑

k=1

dknk = 0m.

(i) First, consider the case K = C. By Lemma 2.7, one can define a map

(2.24) iD,n,C : QD,Σ
n (C)→ ΩXΣ(n) by

iD,n,C(f)(α) =

{

[Fn(f1)(α), Fn(f2)(α), · · · , Fn(fr)(α)] if α ∈ R

[e , e, · · · , e] if α =∞
for f = (f1(z), · · · , fr(z)) ∈ QD,Σ

n (C) and α ∈ R ∪ ∞ = S1, where we set
e = (1, 1, · · · , 1) ∈ Cn.

Since the space QD,Σ
n (C) is simply connected and Ωqn,C is a universal

covering (by (iv) of Remark 2.10 and (ii) of Corollary 3.10), the map iD,n,C

lifts to the space ΩZKΣ
(D2n, S2n−1), and there is a based map

(2.25) jD,n,C : QD,Σ
n (C)→ ΩZKΣ

(D2n, S2n−1) ≃ ΩZKΣ
(Cn, (Cn)∗)

such that the following equality holds:

(2.26) Ωqn,C ◦ jD,n,C = iD,n,C.

(ii) Next, consider the case K = R.
Recall the Z2-action on the spaces QD,Σ

n (C) andXΣ induced from complex
conjugation on C, and remark that the map iD,n,C is a Z2-equivariant map.
Then, by (2.20) and (2.21), we see that

(2.27) iD,n,C(Q
D,Σ
n (R)) ⊂ ΩXΣ(n)

Z2 = ΩXΣ,R(n).
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Thus, the restriction iD,n,C|QD,Σ
n (R) defines the map

(2.28) iD,n,R = iD,n,C|QD,Σ
n (R) : QD,Σ

n (R)→ ΩXΣ,R(n)

such that the following diagram is commutative:

(2.29)

QD,Σ
n (R)

iD,n,R−−−→ ΩXΣ,R(n)
Ωqn,R←−−−
≃

ΩZKΣ
(Rn, (Rn)∗)

iDn





y
ΩiXn





y

Ωjn





y

QD,Σ
n (C)

iD,n,C−−−→ ΩXΣ(n)
Ωqn,C←−−− ΩZKΣ

(Cn, (Cn)∗)

where the jn : ZKΣ
(Rn, (Rn)∗)

⊂−→ ZKΣ
(Cn, (Cn)∗) denotes the inclusion

map. Note that Ωqn,R is a homotopy equivalence (which will be proved in
Corollary 3.10). Thus, there is a based map

(2.30) jD,n,R : QD,Σ
n (R)→ ΩZKΣ

(Rn, (Rn)∗) ≃ ΩZKΣ
(Dn, Sn−1)

which satisfies the following equality:

(2.31) Ωqn,R ◦ jD,n,R = iD,n,R (up to homotopy).

Remark 2.12. When
∑r

k=1 dknk = 0n, by (2.25) and (2.31), we obtain the
map

(2.32) jD,n,K : QD,Σ
n (K)→ ΩZKΣ

(Kn, (Kn)∗) ≃ ΩZKΣ
(Dd(K)n, Sd(K)n−1),

where the number d(K) is defined by

(2.33) d(K) = dimR K =

{

2 if K = C,
1 if K = R.

2.5 The numbers rmin(Σ) and d(D; Σ, n,K). Before stating the main
results of this paper, we need to define the positive integers rmin(Σ) and
d(D; Σ, n,K) (which already appeared in the statements of our results).

Definition 2.13. (i) We say that a set S = {n i1 , · · · ,n is} is a primitive
collection if Cone(S) /∈ Σ and Cone(T ) ∈ Σ for any proper subset T $ S.

(ii) For each r-tuple D = (d1, · · · , dr) ∈ Nr, define the positive integer
d(D,Σ, n,K) by

d(D; Σ, n,K) =

{

(2nrmin(Σ)− 2)⌊dmin

n
⌋ − 2 if K = C

(nrmin(Σ)− 2)⌊dmin

n
⌋ − 2 if K = R

(2.34)
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as in (1.5), where rmin(Σ) and dmin are the positive integers given by

(2.35)

{

rmin(Σ) = min{s ∈ N : {n i1 , · · · ,n is} is a primitive collection},
dmin = min{d1, d2, · · · , dr}.

Note that

(2.36) rmin(Σ) ≥ 2.

2.6 The main results. Note that the space QD,Σ
n (C) has already been

extensively studied in the case n = 1 in [24]. The main purpose of this paper
is to generalize the results of [24] to the space QD,Σ

n (K) for K = C or R and
for any n ≥ 1. Indeed, the main results of this article are stated as follows.

Theorem 2.14 (The case K = C). Let n ∈ N, let D = (d1, · · · , dr) ∈ Nr,
and let XΣ be an m dimensional simply connected non-singular toric variety
such that the two conditions (2.18)∗ and (1.4)∗ holds.

(i) If
∑r

k=1 dknk = 0m, then the map (given by (2.25))

jD,n,C : QD,Σ
n (C)→ ΩZKΣ

(D2n, S2n−1)

is a homotopy equivalence through dimension d(D; Σ, n,C).
(ii) If

∑r
k=1 dknk 6= 0m, there is a map

jD,n,C : QD,Σ
n (C)→ ΩZKΣ

(D2n, S2n−1)

which is a homotopy equivalence through dimension d(D; Σ, n,C).7

Theorem 2.15 (The case K = R). Let n ∈ N, let D = (d1, · · · , dr) ∈ Nr,
and let XΣ be an m dimensional simply connected non-singular toric variety
such that the two conditions (2.18)∗ and (1.4)† hold.

(i) If
∑r

k=1 dknk = 0m, then the map (given by (2.30))

jD,n,R : QD,Σ
n (R)→ ΩZKΣ

(Dn, Sn−1)

is a homotopy equivalence through dimension d(D; Σ, n,R).
(ii) If

∑r
k=1 dknk 6= 0m, there is a map

jD,n,R : QD,Σ
n (R)→ ΩZKΣ

(Dn, Sn−1)

which is a homotopy equivalence through dimension d(D; Σ, n,R).
7This map has to be constructed in a slightly different way from the one in (i) but we

shall use the same notation for both.
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Corollary 2.16. Let n ∈ N, let D = (d1, · · · , dr) ∈ Nr. and let XΣ be an
m dimensional simply connected non-singular toric variety such that the two
conditions (2.18)∗ and (1.4)∗ hold.

(i) If
∑r

k=1 dknk = 0m, then the map iD,n,C : QD,Σ
n (C)→ ΩXΣ(n) induces

an isomorphism

(iD,n,C)∗ : πs(Q
D,Σ
n (C))

∼=−→ πs(ΩXΣ) ∼= πs+1(XΣ(n))

for any 2 ≤ s ≤ d(D; Σ, n,C).
(ii) If

∑r
k=1 dknk 6= 0m, the map iD,n,C : QD,Σ

n (C)→ ΩXΣ(n) defined by

(2.37) iD,n,C := Ωqn,C ◦ jD,n,C

induces an isomorphism

(iD,n,C)∗ : πs(Q
D,Σ
n (C))

∼=−→ πs(ΩXΣ(n)) ∼= πs+1(XΣ(n))

for any 2 ≤ s ≤ d(D; Σ, n,C).

Consider the Z2-action on the spaces QD,Σ
n (C) and ZKΣ

(D2n, S2n−1) in-
duced from the complex conjugation on C, where we identify

(2.38) D2n = {(x1, · · · , xn) ∈ Cn :
n

∑

k=1

|xk|2 ≤ 1}.

Note that we can regard the space D2n as a Z2-space whose Z2 action is given
by the complex conjugation.

(2.39) (−1) · (x1, · · · , xn) = (x1, · · · , xn) for (x1, · · · , xn) ∈ D2n.

Since QD,Σ
n (R) = QD,Σ

n (C)Z2 , ZKΣ
(Dn, Sn−1) = ZKΣ

(D2n, S2n−1)Z2 , and
jD,n,R = (jD,n,C)

Z2 , we also obtain the following result.

Corollary 2.17. Let n ∈ N, let D = (d1, · · · , dr) ∈ Nr, and let XΣ be an
m dimensional simply connected non-singular toric variety satisfying the two
conditions (2.18)∗ and (1.4)†. Then the map

jD,n,C : QD,Σ
n (C)→ ΩZKΣ

(D2n, S2n−1)

is a Z2-equivariant homotopy equivalence through dimension d(D; Σ, n,R).

Finally, we easily obtain the following two corollaries.

14



Corollary 2.18. Let n ∈ N, let D = (d1, · · · , dr) ∈ Nr, and let XΣ be a sim-
ply connected compact non-singular toric variety such that the the condition
(2.18)∗ holds. Let Σ(1) denote the set of all one dimensional cones in Σ, and
let Σ1 be any fan in Rm satisfying the condition

(2.40) Σ(1) ⊂ Σ1 $ Σ.

(i) Then XΣ1 is a non-compact smooth toric subvariety of XΣ.
(ii) If the condition (1.4)∗ holds and

∑r
k=1 dknk = 0m, then the map

jD,n,C : QD,Σ1
n (C)→ ΩZΣ1(D

2n, S2n−1)

is a homotopy equivalence through the dimension d(D; Σ1, n,C).
Moreover, the map iD,n,C : QD,Σ1

n (C)→ ΩXΣ1 induces an isomorphism

(iD,n,C)∗ : πs(Q
D,Σ1
n (C))

∼=−→ πs(ΩXΣ1(n))
∼= πs+1(XΣ1(n))

for any 2 ≤ s ≤ d(D; Σ1, n,C).
(iii) If the condition (1.4)∗ holds and

∑r
k=1 dknk 6= 0m, then there is a

map
jD,n,C : QD,Σ1

n (C)→ ΩZKΣ1
(D2n, S2n−1)

which is a homotopy equivalence through dimension d(D; Σ1, n,C).
Moreover, the map iD,n,C : QD,Σ1

n (C)→ ΩXΣ1 defined by

(2.41) iD,n,C := Ωqn,C ◦ jD,n,C

induces an isomorphism

(iD,n,C)∗ : πs(Q
D,Σ1
n (C))

∼=−→ πs(ΩXΣ1(n))
∼= πs+1(XΣ1(n))

for any 2 ≤ s ≤ d(D; Σ1, n,C).
(iv) If the condition (1.4)† holds and

∑r
k=1 dknk = 0m, then the map

jD,n,R : QD,Σ1
n (R)→ ΩZΣ1(D

n, Sn−1)

is a homotopy equivalence through the dimension d(D; Σ1, n,K).
(v) If the condition (1.4)† holds and

∑r
k=1 dknk 6= 0m, there is a map

jD,n,R : QD,Σ1
n (R)→ ΩZKΣ1

(Dn, Sn−1)

which is a homotopy equivalence through dimension d(D; Σ1, n,R).
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3 Basic facts about toric varieties

In this section, we recall some basic definitions and known results.

Definition 3.1 ([7], Definition 6.27, Example 6.39). Let K be a simplicial
complex on the index set [r], and let I(K) = {σ ⊂ [r] : σ /∈ K} as in (2.2).

(i) An element σ ∈ I(K) is called a minimal non-face of K if τ ∈ K for
any proper subset τ $ σ.

(ii) Then we denote by Imin(K) the set of all minimal non-faces of K. It
is easy to see that the following equality holds.

K = {σ ⊂ [r] : τ 6⊂ σ for any τ ∈ Imin(K)}.(3.1)

(iii) We denote by ZK and DJ(K) the moment-angle complex of K and
the Davis-Januszkiewicz space of K which are defined by

(3.2) ZK = ZK(D
2, S1), DJ(K) = ZK(CP∞, ∗).

Remark 3.2. Let Σ be a fan in Rm and let XΣ be a smooth toric va-
riety such that the condition (2.18)∗ holds. Then it is easy to see that
{n i1 ,n i2 , · · · ,n is} is primitive if and only if σ = {i1, i2, · · · , is} ∈ Imin(KΣ).
Thus, we also obtain the following equality:

(3.3) rmin(Σ) = min{card(σ) : σ ∈ I(KΣ)}.
Lemma 3.3 ([7]; Corollary 6.30, Theorems 6.33, 8.9). Let K be a simplicial
complex on the index set [r].

(i) The space ZK is 2-connected, and there is a fibration sequence

(3.4) ZK −→ DJ(K)
⊂−→ (CP∞)r.

(ii) There are Tr-equivariant deformation retraction

(3.5) ret : ZK(Kn, (Kn)∗)
≃−→ ZK(D

d(K)n, Sd(K)n−1).

where we set Tr = (S1)r.

Lemma 3.4 ([30]). Let Σ be a fan in Rm and let XΣ be a smooth toric variety
such that the condition (2.18)∗ holds.

(i) There is an isomorphism

(3.6) GΣ,K
∼= Tr−m

K = (K∗)r−m.

(ii) The group GΣ,K acts on the space ZKΣ
(Kn, (Kn)∗) freely as in (2.10)

and there is a principal GΣ,K-bundle sequence

(3.7) GΣ,K −→ ZKΣ
(Kn, (Kn)∗)

qn,K−→ XΣ,K.

(iii) If K = R, there is a homotopy equivalence Tr
R ≃ (Z2)

r−m and the
map qn,R is a covering projection with fiber (Z2)

r−m (up to homotopy).
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Proof. First, consider the case K = C. Then the assertions (i) and (ii) follow
from [30, (6.2) page 527; Proposition 6.7].

Next, let K = R. Since GΣ = GΣ,C
∼= (C∗)r−m and GΣ,R = GΣ ∩ (R∗)r,

we have the isomorphism GΣ,R
∼= (R∗)r−m = Tr−m

R . Since GΣ,C acts on
the space ZKΣ

(Cn, (Cn)∗) freely, the subgroup GΣ,R also acts on the space
ZKΣ

(Rn, (Rn)∗) freely and we obtain the GΣ,R-principal fibration sequence
(3.7) for the case K = R. This proves (i) and (ii) for the case K = R. Since
GΣ,R ≃ (Z2)

r−m, qn,R is a covering projection with fiber (Z2)
r−m, and we

obtain (iii).

Definition 3.5 (c.f. [26], (5.26)). Let Σ be a fan in Rm and let XΣ be a
smooth toric variety such that the condition (2.18)∗ holds.

(i) Let KΣ(n) denote the simplicial complex on the index set [r] × [n]
defined by

(3.8) KΣ(n) = {τ ⊂ [r]× [n] : σ × [n] 6⊂ τ for any σ ∈ I(KΣ)}.

(ii) For each (i, j) ∈ [r] × [n], let n i,j ∈ Zmn denote the lattice vector
defined by

(3.9) n i,j = (a1, · · · ,an), where we set ak =

{

n i (k = j)

0m (k 6= j)

and define a fan Fn(Σ) in Rmn by

(3.10) Fn(Σ) = {cτ : τ ∈ KΣ(n)},

where cτ denotes the cone in Rmn given by

(3.11) cτ = Cone({n i,j : (i, j) ∈ τ}) =
{

∑

(i,j)∈τ

xi,jn i,j : xi,j ≥ 0
}

.

Lemma 3.6. (i) If Tr = (S1)r, there is a Tr-equivariant homeomorphism

(3.12) ZKΣ
(D2n, S2n−1) ∼= ZKΣ(n)(D

2, S1).

(ii) If Tr
C = (C∗)r, there is a Tr

C-equivariant homeomorphsim

(3.13) ZKΣ
(Cn, (Cn)∗) ≃ ZKΣ(n)(C,C

∗).

(iii) The space ZKΣ
(D2n, S2n−1) is 2-connected.

17



Proof. (i) Let J = (n, n, · · · , n) ∈ Nr and let KΣ(J) denote the simplical
complex on the index set [r] × [n] defined by [6, Definition 2.1].8 Then it
follows from [6, Definition 2.1] that the following equality holds:

(3.14) Imin(KΣ(J)) = {τ × [n] : τ ∈ Imin(KΣ)}.

Hence, by (3.1) and (3.8), we obtain the following equality:

KΣ(J) = {σ ⊂ [r]× [n] : τ × [n] 6⊂ σ for any τ ∈ Imin(KΣ)}.

Thus, we we have KΣ(J) = KΣ(n) by (3.14). Hence, it follows from [6, The-
orem 7.5] that there is a Tr-equivariant homeomorphism ZKΣ

(D2n, S2n−1) ∼=
ZKΣ(n)(D

2, S1), and the assertion (i) follows.
(ii) It follows from [26, (5.32)] that there is a homeomorphism

ZKΣ
(Cn, (Cn)∗) ∼= ZKKΣ(n)

(C,C∗).

One can easily check that the above homeomorphism is Tr
C-equivariant, and

the assertion (ii) follows.
(iii) It follows from (i) and (ii) that there is the following homotopy equiv-

alence

ZKΣ
(D2n, S2n−1) ≃ ZKΣ

(Cn, (Cn)∗) ∼= ZKΣ(n)(C,C∗) ≃ ZKΣ(n)(D
2, S1).

Since the moment-angle complex ZKΣ(n)(D
2, S1) is 2-connected by [7, Theo-

rem 6.33], the space ZKΣ
(D2n, S2n−1) is also 2-connected.

Definition 3.7 ([11]). Let Σ be a fan in Rm. Then a cone σ ∈ Σ is called
smooth if it is generated by a subset of a basis of Zm.

Lemma 3.8 ([11]). Let XΣ be a toric variety determined by a fan Σ in Rm.

(i) XΣ is compact if and only if Rm =
⋃

σ∈Σ σ.

(ii) XΣ is smooth if and only if every cone σ ∈ Σ is smooth.

Lemma 3.9. The space XΣ(n) is a non-singular toric variety associated to
the fan Fn(Σ). Moreover, there is an isomorphism XΣ(n) ∼= XFn(Σ), and
KΣ(n) is the underlying simplicial complex of the fan Fn(Σ).

8More precisely, if we set (K,m) = (KΣ, r) and J = (j1, j2, · · · , jr) = (n, n, · · · , n)
(r-times) in the notation of [6, Definition 2.1], we get the simplicial complex K(J) on the
index set [r]× [n].
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Proof. To see this, consider the toric variety X(Σ) determined by the fan
Fn(Σ). By considering the homogenous coordinate representation of X(Σ),
we easily see that it is isomorphic to XΣ(n). Moreover, one can easily show
that XΣ(n) is non-singular (by using Lemma 3.8). Thus, XΣ(n) is a non-
singular toric variety associated to the fan Fn(Σ). Moreover, by (3.10) we
easily see that KΣ(n) is the underlying simplicial complex of Fn(Σ).

Corollary 3.10. Let Σ be a fan in Rm and let XΣ be a smooth toric variety
such that the condition (2.18)∗ holds.

(i) The map Ωqn,C : ΩZKΣ
(Cn, (Cn)∗) −→ ΩXΣ(n) is a universal covering

with fiber Zr−m.
(ii) The map Ωqn,R : ΩZKΣ

(Rn, (Rn)∗)
≃−→ ΩXΣ,R(n) is a homotopy equiv-

alence.
(iii) There is the following fibration sequence (up to homotopy)

(3.15) Tmn
C −→ XΣ(n) −→ DJ(KΣ(n)).

Proof. (i) It follows easily from Lemma 3.4, that the map Ωqn,C is a covering
projection with fiber Zr−m. Since ΩQD,Σ

n (C) is simply connected (by (i)),
Ωqn,C is a universal covering with fiber Zr−m.

(ii) The assertion (ii) easily follows from (iii) of Lemma 3.4.
(iii) The assertion (iii) follows from Lemmas 3.6, 3.9 and [23, Proposition

4.4].

Lemma 3.11 ([23]; Lemma 3.4). If the condition (2.18)∗ is satisfied, the
space XΣ is simply connected and π2(XΣ) = Zr−m.

We end this section with a proof of Lemma 2.7.

Proof of Lemma 2.7. Consider the map F = (F1, · · · , Fr) is given by (2.17).
We let K = C, as the proof for K = R is completely analogous. It suffices
to show that F (λx) = F (x) up to GΣ,C-action for any (λ, x) ∈ R∗ × (Rs+1 \
{0s+1}) iff

∑r
k=1 dknk = 0m.

Since all homogenous polynomials {fk;i}nk=1 have the same degree di, for
each (λ, x ) ∈ R∗ × Rs+1,

Fi(λx ) = (f1;i(λx ), · · · , fn;i(λx )) = (λdif1;i(x ), · · · , λdifn;i(x ))
= λdi(f1;i(x ), · · · , fn;i(x )) = λdiFi(x ).

Thus, we have

F (λx) = (F1(λx), · · · , Fr(λx)) = (λd1F1(x), · · · , λdrFr(x))

= (λd1 , · · · , λdr) · (F1(x), · · · , Fr(x)) = (λd1 , · · · , λdr) · F (x).
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Hence, it remains to show that (λd1 , · · · , λdr) ∈ GΣ,C for any λ ∈ R∗ iff
∑r

k=1 dknk = 0m. However, (λ
d1 , · · · , λdr) ∈ GΣ,C for any λ ∈ R∗ iff

r
∏

k=1

(λdk)〈nk,m〉 = λ〈
∑r

k=1 dknk,m〉 = 1 for any m ∈ Zm ⇔
r

∑

k=1

dknk = 0m

and this completes the proof.

4 The Vassiliev spectral sequence

4.1 Simplicial resolutions. First, recall the definitions of the non-degenerate
simplicial resolution and the associated truncated simplicial resolution ([21],
[27], [28], [32], [33]).

Definition 4.1. (i) For a finite set v = {v1, · · · , vl} ⊂ RN , let σ(v) denote
the convex hull spanned by v . Let h : X → Y be a surjective map such that
h−1(y) is a finite set for any y ∈ Y , and let i : X → RN be an embedding.
Let X∆ and h∆ : X∆ → Y denote the space and the map defined by

(4.1) X∆ =
{

(y, u) ∈ Y ×RN : u ∈ σ(i(h−1(y)))
}

⊂ Y ×RN , h∆(y, u) = y.

The pair (X∆, h∆) is called the simplicial resolution of (h, i). In particular, it
is called a non-degenerate simplicial resolution if for each y ∈ Y any k points
of i(h−1(y)) span (k − 1)-dimensional simplex of RN .

(ii) For each k ≥ 0, let X∆
k ⊂ X∆ be the subspace of the union of the

(k − 1)-skeletons of the simplices over all the points y in Y given by

(4.2) X∆
k =

{

(y, u) ∈ X∆ : u ∈ σ(v), v = {v1, · · · , vl} ⊂ i(h−1(y)), l ≤ k
}

.

We make the identification X = X∆
1 by identifying x ∈ X with the pair

(h(x), i(x)) ∈ X∆
1 , and we note that there is an increasing filtration

(4.3) ∅ = X∆
0 ⊂ X = X∆

1 ⊂ X∆
2 ⊂ · · · ⊂ X∆

k ⊂ · · · ⊂
∞
⋃

k=0

X∆
k = X∆.

Since the map h∆ : X∆ → Y is a proper map, it extends to the map h∆+ :
X∆

+ → Y+ between the one-point compactifications, where X+ denotes the
one-point compactification of a locally compact space X .

Definition 4.2. Let h : X → Y be a surjective semi-algebraic map between
semi-algebraic spaces, j : X → RN be a semi-algebraic embedding, and
let (X∆, h∆ : X∆ → Y ) denote the associated non-degenerate simplicial
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resolution of (h, j). Then for each positive integer k ≥ 1, we denote by
h∆k : X∆(k) → Y the truncated (after the k-th term) simplicial resolution of
Y as in [28]. Note that that there is a natural filtration

X∆
0 ⊂ X∆

1 ⊂ · · · ⊂ X∆
l ⊂ X∆

l+1 ⊂ · · · ⊂ X∆
k ⊂ X∆

k+1 = X∆
k+2 = · · · = X∆(k),

where X∆
0 = ∅, X∆

l = X∆
l if l ≤ k and X∆

l = X∆(k) if l > k.

4.2 Vassiliev spectral sequences. Next, we shall construct the Vassiliev
spectral sequence for computing the homology of the space QD,Σ

n (K).

From now on, we always assume that Σ is a fan in Rm such that XΣ is
simply connected toric variety satisfying the condition (2.18)∗. Moreover, let
D = (d1, · · · , dr) ∈ Nr will always be a fixed r-tuple of positive integers.

Definition 4.3. (i) For each d ∈ N, let PK
d ⊂ K[z] denote the space of all

monic polynomials f(z) = zd + ad−1
z + · · ·+ ad ∈ K[z] of degree d. Then for

each D = (d1, · · · , dr) ∈ Nr, let PK
D denote the space of r-tuples of monic

polynomials defined by

(4.4) PK
D = PK

d1
× PK

d2
× · · · × PK

dr .

(ii) For each f = (f1(z), · · · , fr(z)) ∈ PK
D, let F(n)(f)(z) denote the rn-

tuple of monic polynomials defined by

(4.5) F(n)(f)(z) = (Fn(f1)(z), · · · , Fn(fr)(z)) ∈ K[z]rn,

where we denote by Fn(fi)(z) the n-tuple of monic polynomials of degree di
given by

(4.6) Fn(fi)(z) = (fi(z), fi(z) + f ′
i(z), fi(z) + f ′′

i (z), · · · , fi(z) + f
(n−1)
i (z))

for each 1 ≤ i ≤ r (as in (3.10)).
(iii) Let ΣD denote the discriminant of QD,Σ

n (K) in PK
D given by the com-

plement

ΣD = PK
D \QD,Σ

n (K)

= {f = (f1(z), · · · , fr(z)) ∈ PK
D : F(n)(f)(x) ∈ LKΣ

n (K) for some x ∈ R},

where LKΣ
n (K) denotes the set given by K = KΣ in (2.5).

(iv) Let ZD ⊂ ΣD × R denote the tautological normalization of ΣD con-
sisting of all pairs (f, x) = ((f1(z), . . . , fr(z)), x) ∈ ΣD × R satisfying the
condition F(n)(f)(x) = (Fn(f1)(x), · · · , Fn(fr)(x)) ∈ LKΣ

n (K). Projection on
the first factor gives a surjective map πD : ZD → ΣD.
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Remark 4.4. Let σk ∈ [r] for k = 1, 2. It is easy to see that Lσ1(K
n) ⊂

Lσ2(K
n) if σ1 ⊃ σ2. Letting

Pr(Σ) = {σ = {i1, · · · , is} ⊂ [r] : {ni1 , · · · ,nis} is a primitive collection},

we see that LKΣ
n (K) =

⋃

σ∈Pr(Σ)

Lσ(Kn), and by using (2.35) we obtain the

equality

(4.7) dimLKΣ
n (K) = nd(K)(r − rmin(Σ)) =

{

2n(r − rmin(Σ)) if K = C,
n(r − rmin(Σ)) if K = R.

Our goal in this section is to construct, by means of the non-degenerate
simplicial resolution of the discriminant, a spectral sequence converging to
the homology of QD,Σ

n (K).

Definition 4.5. (i) For an r-tupleD = (d1, · · · , dr) ∈ Nr of positive integers,
let N(D) denote the positive integer given by

(4.8) N(D) =
r

∑

k=1

dk.

(ii) For each based space X , let F (X, d) denote the ordered configuration
space of distinct d points in X defined by

(4.9) F (X, d) = {(x1, · · · , xd) ∈ Xd : xi 6= xj if i 6= j}.

Note that the symmetric group Sd of d-letters acts on F (X, d) freely by
permuting coordinates. Let Cd(X) denote the unordered configuration space
of d-distinct points in X given by the orbit space

(4.10) Cd(X) = F (X, d)/Sd.

(iii) Let Lk;Σ,K ⊂ (R× LKΣ
n (K))k denote the subspaces defined by

Lk;Σ,K = {((x1, s1), · · · , (xk, sk)) ∈ (R× LKΣ
n (K))k : xi 6= xj if i 6= j}.

The symmetric group Sk on k letters acts on the space Lk;Σ,K by permuting
k-elements., and let Ck;Σ,K denote the orbit space defined by

(4.11) Ck;Σ,K = Lk;Σ,K/Sk.

Note that the space Ck;Σ,K is a cell-complex of dimension (by (4.7))

(4.12) dimCk;Σ,K =

{

k + 2kn(r − rmin(Σ)) if K = C,

k + kn(r − rmin(Σ)) if K = R.
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(iv) Let (XD, π∆
D : XD → ΣD) be the non-degenerate simplicial resolution

associated to the surjective map πD : ZD → ΣD with the natural increasing
filtration as in Definition 4.1,

∅ = XD
0 ⊂ XD

1 ⊂ XD
2 ⊂ · · · ⊂ XD =

∞
⋃

k=0

XD
k .

By [32, Lemma 1 (page 90)], the map π∆
D extends to a homology equiv-

alence π∆
D+ : XD

+
≃→ ΣD+. Since XD

k +/XD
k−1+

∼= (XD
k \ XD

k−1)+, we have a
spectral sequence

(4.13)
{

Ek,s
t;D, dt : E

k,s
t;D → Ek+t,s+1−t

t;D

}

⇒ Hk+s
c (ΣD;Z),

where Ek,s
1;D = Hk+s

c (XD
k \ XD

k−1;Z) and Hk
c (X ;Z) denotes the cohomology

group with compact supports given by Hk
c (X ;Z) = H̃k(X+;Z).

Since there is a homeomorphism PK
D
∼= KN(D) ∼= Rd(K)N(D), by Alexander

duality there is a natural isomorphism

(4.14) H̃k(Q
D,Σ
n (K);Z) ∼= Hd(K)N(D)−k−1

c (ΣD;Z) for any k.

By reindexing we obtain a spectral sequence
{

Et;D
k,s , d̃

t : Et;D
k,s → Et;D

k+t,s+t−1

}

⇒ Hs−k(Q
D,Σ
n (K);Z),(4.15)

where E1;D
k,s = H

d(K)N(D)+k−s−1
c (XD

k \ XD
k−1;Z).

Lemma 4.6. If dmin ≥ n and 1 ≤ k ≤ ⌊dmin

n
⌋, the space XD

k \ XD
k−1 is

homeomorphic to the total space of a real affine bundle ξD,k,n over Ck;Σ,K

with rank lD,k,n = d(K)(N(D)− nrk) + k − 1.

Proof. Since the proof is completely analogous to that of [26, Lemma 4.9],
we omit detail of the proof.

Lemma 4.7. If dmin ≥ n and 1 ≤ k ≤ ⌊dmin

n
⌋, there is a natural isomorphism

E1;D
k,s
∼= Hd(K)nrk−s

c (Ck;Σ,K;±Z),
where the twisted coefficients system ±Z comes from the Thom isomorphism.

Proof. Suppose that 1 ≤ k ≤ ⌊dmin

n
⌋. By Lemma 4.6, there is a homeomor-

phism (XD
k \ XD

k−1)+
∼= T (ξD,k), where T (ξD,k,n) denotes the Thom space of

ξD,k,n. Since (d(K)N(D) + k − s − 1) − lD,k,n = d(K)nrk − s, the Thom
isomorphism gives a natural isomorphism

E1;d
k,s
∼= H̃d(K)N(D)+k−s−1(T (ξd,k,n);Z) ∼= Hd(K)nrk−s

c (Ck;Σ,K;±Z),
and the assertion follows.
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5 Stabilization maps

We will now define two stabilization maps

(5.1)

{

sD,D+a : QD,Σ
n (C)→ QD,D+a

n (C)

sRD,D+a
: QD,Σ

n (R)→ QD,D+a

n (R)
for each a 6= 0r ∈ (Z≥0)

r.

Definition 5.1. (i) For an r-tuple D = (d1, · · · , dr) ∈ Nr, let UD ⊂ C denote
the subspace defined by

(5.2) UD = {w ∈ C : Re(w) < N(D)},

and let ϕD : C
∼=−→ UD be any homeomorphism (which we now fix) satisfying

the following two conditions:

(5.3) ϕD(R) = (−∞, N(D)) and ϕD(α) = ϕD(α) for any α ∈ H+,

where H+ ⊂ C denotes the upper half plane in C given by

(5.4) H+ = {α ∈ C : Im α > 0}.

(ii) Now let us choose and fix any r points (x1, · · · , xr) ∈ (C \ UD)
r

satisfying the condition xi 6= xj if i 6= j.

For each monic polynomial f(z) =
∏d

k=1(z − αk) ∈ C[z] of degree d, let
ϕD(f) denote the monic polynomial of the same degree d given by

(5.5) ϕD(f) =

d
∏

k=1

(z − ϕD(αk)).

(iii) For each r-tuple a = (a1, · · · , ar) 6= 0r ∈ (Z≥0)
r, define the stabiliza-

tion map

sD,D+a :QD,Σ
n (C)→ QD+a ,Σ

n (C) by(5.6)

sD,D+a(f) = (ϕD(f1)(z − x1)a1 , · · · , ϕD(fr)(z − xr)ar)

for f = (f1(z), · · · , fr(z)) ∈ QD,Σ
n (C).

Remark 5.2. (i) Note that the definition of the map sD,D+a depends on the
choice of the homeomorphism ϕD and the r-tuple (x1, · · · , xr) ∈ (C \ UD)

r

of points, but one can show that the homotopy type of it does not depend
on these choices.
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(ii) Let a , b ∈ (Z≥0)
r be any two r-tuples such that a , b 6= 0r. Then it

is easy to see that the equality

(5.7) (sD+a,D+a+b) ◦ (sD,D+a) = sD,D+a+b (up to homotopy)

holds. Thus we mostly only consider the stabilization map sD,D+ei
for

each 1 ≤ i ≤ r, where e1 = (1, 0, · · · , 0), e2 = (0, 1, 0, · · · , 0), · · · , er =
(0, 0, · · · , 0, 1) ∈ Rr denote the standard orthogonal basis of Rr.

(iii) From (5.3) it easily follows that

(5.8) ϕD(f) ∈ R[z] if f = f(z) ∈ R[z].

Thus, for each r-tuple a = (a1, · · · , ar) 6= 0r ∈ (Z≥0)
r, one can easily show

that the following holds:

(5.9) sD,D+a(Q
D,Σ
n (R)) ⊂ QD+a,Σ

n (R).

Definition 5.3. By (5.9), one can define the stabilization map

sRD,D+a
: QD,Σ

n (R)→ QD+a,Σ
n (R) by the restriction(5.10)

sRD,D+a
= sD,D+a|QD,Σ

n (R).

Remark 5.4. By using the definition of (5.6) and (5.8) we easily see that
the following equality holds:

(5.11) sRD,D+a
= (sD,D+a)

Z2 for each a 6= 0r ∈ (Z≥0)
r.

6 Homology stability

We shall consider the homology stability of the space QD,Σ
n (K).

6.1 The case K = C. First, consider the case K = C. Let 1 ≤ i ≤ r and
consider the stabilization map

(6.1) sD,D+ei
: QD,Σ

n (C)→ QD+ei,Σ
n (C).

It is easy to see that it extends to an open embedding

(6.2) sD,i : C×QD,Σ
n (C)→ QD+ei,Σ

n (C)

It also naturally extends to an open embedding s̃D,i : P
C
D → PC

D+ei
and by

restriction we obtain an open embedding

(6.3) s̃D,i : C× ΣD → ΣD+ei
.
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Since one-point compactification is contravariant for open embeddings, this
map induces a map in the opposite direction

(6.4) s̃D,i+ : (ΣD+ei
)+ → (C× ΣD)+ = S2 ∧ ΣD+.

We obtain the following commutative diagram

(6.5)

H̃k(Q
D,Σ
n (C);Z)

(sD,D+ei
)∗−−−−−−→ H̃k(Q

D+ei,Σ
n (C);Z)

AD1





y

∼= AD2





y

∼=

H
2N(D)−k−1
c (ΣD;Z)

(s̃D,i+)∗−−−−−→ H
2N(D)−k+1
c (ΣD+ei

;Z).

Here, ADk (k = 1, 2) denote the corresponding Alexander duality isomor-
phisms and s̃ ∗

D,i+ denotes the composite of the suspension isomorphism with
the homomorphism (s̃D+)

∗ given by

(6.6) HM
c (ΣD;Z)

∼=→ HM+2
c (C× ΣD;Z)

(s̃D,i+)∗−→ HM+2
c (ΣD+ei

;Z),

where M = 2N(D)− k − 1.
By the universality of the non-degenerate simplicial resolution [27], the

map s̃D,i also naturally extends to a filtration preserving open embedding

(6.7) s̃D,i : C× XD → XD+ei

between non-degenerate simplicial resolutions. This induces a filtration pre-
serving map

(6.8) (s̃D,i)+ : XD+ei

+ → (C× XD)+ = S2 ∧ XD
+ ,

and we finally obtain the homomorphism of spectral sequences

{θ̃tk,s : Et;D
k,s → Et;D+a

k,s }, where(6.9)
{

{

Et;D
k,s , d̃

t : Et;D
k,s → Et;D

k+t,s+t−1

}

⇒ Hs−k(Q
D,Σ
n (C);Z),

{

Et;D+ei

k,s , d̃t : Et;D+ei

k,s → Et;D+ei

k+t,s+t−1

}

⇒ Hs−k(Q
D+ei
n (C);Z),

{

E1;D
k,s = H

2N(D)+k−1−s
c (XD

k \ XD
k−1;Z),

E1;D+ei

k,s = H
2N(D)+k+1−s
c (XD+ei

k \ XD+ei

k−1 ;Z).

Lemma 6.1. If 1 ≤ i ≤ r and 0 ≤ k ≤ ⌊dmin

n
⌋, θ̃1k,s : E1;D

k,s → E1;D+ei

k,s is an
isomorphism for any s.

Proof. Since the proof is completely analogous to that of [26, Lemma 4.13],
we omit the detail.
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Now we consider the spectral sequences induced by truncated simplicial
resolutions.

Definition 6.2. Let X∆ denote the truncated (after the ⌊dmin

n
⌋-th term)

simplicial resolution of ΣD with the natural filtration

∅ = X∆
0 ⊂ X∆

1 ⊂ · · · ⊂ X∆
⌊dmin/n⌋

⊂ X∆
⌊dmin/n⌋+1 = X∆

⌊dmin/n⌋+2 = · · · = X∆,

where X∆
k = XD

k if k ≤ ⌊dmin

n
⌋ and X∆

k = X∆ if k ≥ ⌊dmin

n
⌋+ 1.

Similarly, let Y ∆ denote the truncated (after the ⌊dmin

n
⌋-th term) simplicial

resolution of ΣD+ei
with the natural filtration

∅ = Y ∆
0 ⊂ Y ∆

1 ⊂ · · · ⊂ Y ∆
⌊dmin/n⌋

⊂ Y ∆
⌊dmin/n⌋+1 = Y ∆

⌊dmin/n⌋+2 = · · · = Y ∆,

where Y ∆
k = XD+ei

k if k ≤ ⌊dmin

n
⌋ and Y ∆

k = Y ∆ if k ≥ ⌊dmin

n
⌋+ 1.

By [28, §2 and §3], we obtain the following truncated spectral sequences

{

{

Et;C
k,s , d

t : Et;C
k,s → Et;C

k+t,s+t−1

}

⇒ Hs−k(Q
D,Σ
n (C);Z),

{

′Et;C
k,s , d

t : ′Et;C
k,s → ′Et

k+t,s+t−1

}

⇒ Hs−k(Q
D+ei
n (C);Z),

(6.10)

where
{

E1;C
k,s = H

2N(D)+k−1−s
c (X∆

k \X∆
k−1;Z),

′E1;C
k,s = H

2N(D)+k+1−s
c (Y ∆

k \ Y ∆
k−1;Z).

(6.11)

By the naturality of truncated simplicial resolutions, the filtration preserving
map s̃D,i : C × XD → XD+ei gives rise to a natural filtration preserving
map s̃′D,i : C × X∆ → Y ∆ which, in a way analogous to (6.9), induces a
homomorphism of spectral sequences

(6.12) {θtk,s : Et;C
k,s → ′Et;C

k,s}.

Lemma 6.3. (i) If k < 0 or k ≥ ⌊dmin

n
⌋+ 2, E1;C

k,s = ′E1;C
k,s = 0 for any s.

(ii) E1;C
0,0 = ′E1;C

0,0 = Z and E1;C
0,s = ′E1;C

0,s = 0 if s 6= 0.

(iii) If 1 ≤ k ≤ ⌊dmin

n
⌋, there are isomorphisms

E1;C
k,s
∼= ′E1;C

k,s
∼= H2nrk−s

c (Ck;Σ;±Z).

(iv) If 1 ≤ k ≤ ⌊dmin

n
⌋, E1;C

k,s = ′E1;C
k,s = 0 for any s ≤ (2nrmin(Σ)− 1)k − 1.

(v) If k = ⌊dmin

n
⌋+1, E1;C

k,s = ′E1;C
k,s = 0 for any s ≤ (2nrmin(Σ)−1)⌊dmin

n
⌋−1.
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Proof. Let us write rmin = rmin(Σ) and d′min = ⌊dmin

n
⌋. Since the proofs of

both cases are identical, it suffices to prove the assertions for E1;C
k,s .

(i), (ii), (iii): Since X∆
k = X∆ for any k ≥ d′min+2, the assertions (i) and

(ii) are clearly true. Since X∆
k = XD

k for any k ≤ d′min, the assertion (iii)
easily follows from Lemma 4.7.

(iv) Suppose that 1 ≤ k ≤ d′min. By using the equality (4.12),

2nrk − s > dimCk;Σ ⇔ s ≤ (2nrmin − 1)k − 1.

Thus, the assertion (iv) follows from the isomorphism given by (iii).
(v) By Lemma [28, Lemma 2.1], we see that

dim(X∆
d′min+1 \X∆

d′min
) = dim(XD

d′min
\ XD

d′min−1) + 1 = lD,d′min,n
+ dimCd′min;Σ

+ 1

= 2N(D) + 2d′min − 2nrmind
′
min.

Since E1;C
d′min+1,s = H

2N(D)+d′min−s
c (X∆

d′min+1 \X∆
d′min

;Z) (by (6.11)) and

2N(D) + d′min − s > dim(X∆
d′min+1 \X∆

d′min
) = 2N(D) + 2d′min − 2nrmind

′
min

⇔ s < (2nrmin − 1)d′min ⇔ s ≦ (2nrmin − 1)d′min − 1,

we see that E1;C
d′min+1,s = 0 for any s ≤ (2nrmin − 1)d′min − 1.

Lemma 6.4. If 0 ≤ k ≤ ⌊dmin

n
⌋, θ1k,s : E1;C

k,s

∼=−→ ′E1;C
k,s is an isomorphism for

any s.

Proof. Since (X∆
k , Y

∆
k ) = (XD

k ,XD+ei

k ) for k ≤ ⌊dmin

n
⌋, the assertion follows

from Lemma 6.1.

Theorem 6.5. For each 1 ≤ i ≤ r, the stabilization map

sD,D+ei
: QD,Σ

n (C)→ QD+ei,Σ
n (C)

is a homology equivalence through dimension d(D; Σ, n,C).

Proof. We write rmin = rmin(Σ) and d
′
min = ⌊dmin

n
⌋ as in the proof of Lemma

6.3. Without loss of generality, we may assume that dmin ≥ n ≥ 1.
Let us consider the homomorphism θtk,s : Et;C

k,s → ′Et;C
k,s of truncated

spectral sequences given in (6.12). By using the commutative diagram (6.5)
and the comparison theorem for spectral sequences, we see that it suffices to
prove that the positive integer d(D; Σ, n,C) has the following property:

(†) θ∞k,s is an isomorphism for all (k, s) such that s− k ≤ d(D; Σ, n,C).
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By Lemma 6.3, we can easily see that:

(†)1 if k < 0 or k ≥ d′min + 1, θ∞k,s is an isomorphism for all (k, s) such that
s− k ≤ d(D; Σ, n,C).

Next, assume that 0 ≤ k ≤ d′min, and investigate the condition that θ∞k,s
is an isomorphism. Note that the groups E1;C

k1,s1
and ′E1;C

k1,s1
are not known for

(u, v) ∈ S1 = {(d′min + 1, s) ∈ Z2 : s ≥ (2nrmin − 1)d′min}. By considering the
differentials d1’s of E1;C

k,s and ′E1;C
k,s , and applying Lemma 6.4, we see that θ2k,s

is an isomorphism if (k, s) /∈ S1 ∪ S2, where
S2 = {(u, v) ∈ Z2 : (u+1, v) ∈ S1} = {(d′min, v) ∈ Z2 : v ≥ (2nrmin−1)d′min}.
A similar argument shows that θ3k,s is an isomorphism if (k, s) /∈ ⋃3

t=1 St,
where S3 = {(u, v) ∈ Z2 : (u + 2, v + 1) ∈ S1 ∪ S2}. Continuing in the same
fashion, considering the differentials dt’s on Et;C

k,s and ′Et;C
k,s and applying the

inductive hypothesis, we see that θ∞k,s is an isomorphism if (k, s) /∈ S :=
⋃

t≥1

St =
⋃

t≥1

At, where At denotes the set

At =







There are positive integers l1, · · · , lt such that,

(u, v) ∈ Z2 1 ≤ l1 < l2 < · · · < lt, u+
∑t

j=1 lj = d′min + 1,

v +
∑t

j=1(lj − 1) ≥ (2nrmin − 1)d′min







.

Note that if this set was empty for every t, then, of course, the conclusion
of Theorem 6.5 would hold in all dimensions (this is known to be false in
general). If At 6= ∅, it is easy to see that

a(t) = min{s− k : (k, s) ∈ At} = (2nrmin − 1)d′min − (d′min + 1) + t

= (2nrmin − 2)d′min + t− 1 = d(D; Σ, n,C) + t+ 1.

Hence, we obtain that min{a(t) : t ≥ 1, At 6= ∅} = d(D; Σ, n,C) + 2. Since
θ∞k,s is an isomorphism for any (k, s) /∈ ⋃

t≥1At for each 0 ≤ k ≤ d′min, we
have the following:

(†)2 If 0 ≤ k ≤ d′min, θ
∞
k,s is an isomorphism for any (k, s) such that s− k ≤

d(D; Σ, n,C) + 1.

Then, by (†)1 and (†)2, we know that θ∞;C
k,s : E∞;C

k,s

∼=→ ′E∞;C
k,s is an isomorphism

for any (k, s) if s − k ≤ d(D; Σ, n,C). Hence, by (†) we have the desired
assertion and this completes the proof of Theorem 6.5.

Corollary 6.6. For each a 6= 0r ∈ (Z≥0)
r, the stabilization map

sD,D+a : QD,Σ
n (C)→ QD+a,Σ

n (C)

is a homology equivalence through dimension d(D; Σ, n,C).

Proof. The assertion easily follows from (5.7) and Theorem 6.5.
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6.2 The case K = R. Next, we shall consider the case K = R. By using
exactly the same approach as in Lemmas 4.6, 4.7, 6.1, 6.3, 6.4, Theorem 6.5,
and Corollary 6.6, we can obtain the following result.

Lemma 6.7. There is the following truncated spectral sequence

(6.13)
{

Et;R
k,s , d

t : Et;R
k,s → Et;R

k+t,s+t−1

}

⇒ Hs−k(Q
D,Σ
n (R);Z)

satisfying the following conditions:

(i) If k < 0 or k ≥ ⌊dmin

n
⌋+ 2, E1;R

k,s = 0 for any s.

(ii) E1;R
0,0 = Z and E1;R

0,s = 0 if s 6= 0.

(iii) If 1 ≤ k ≤ ⌊dmin

n
⌋, there is a natural isomorphism

E1;R
k,s
∼= Hnrk−s

c (Ck;Σ,R;±Z).

(iv) If 1 ≤ k ≤ ⌊dmin

n
⌋, E1;R

k,s = 0 for any s ≤ (nrmin(Σ)− 1)k − 1.

(v) If k = ⌊dmin

n
⌋+ 1, E1;R

k,s = 0 for any s ≤ (nrmin(Σ)− 1)⌊dmin

n
⌋ − 1.

Theorem 6.8. For each a 6= 0r ∈ (Z≥0)
r, the stabilization map

sRD,D+a
: QD,Σ

n (R)→ QD+a,Σ
n (R)

is a homology equivalence through dimension d(D; Σ, n,R), where d(D; Σ, n,R)
denotes the integer given by (2.34).

Proof. This assertion can be proved by using the spectral sequence (6.13) in
exactly the same way as in the case of QD,Σ

n (C), so we omit the details.

Corollary 6.9. For each a 6= 0r ∈ (Z≥0)
r, the stabilization map

sD,D+a : QD,Σ
n (C)→ QD+a,Σ

n (C)

is a Z2-equivariant homology equivalence through dimension d(D; Σ, n,R).

Proof. Since d(D; Σ, n,R) < d(D; Σ, n,C), the assertion follows from (5.11),
Corollary 6.6 and Theorem 6.8.
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7 Connectivity

Lemma 7.1. (i) The space QD,Σ
n (C) is simply connected.

(ii) The space QD,Σ
n (R) is simply connected if (n, rmin(Σ)) 6= (1, 2).

Proof. Note that an element of π1(Q
D,Σ
n (K)) can be represented by an r-

tuple (η1, · · · , ηr) of strings of r-different colors where each ηk (1 ≤ k ≤ r)
has total multiplicity dk, as in the case of strings representing elements of the
classical braid group Brd = π1(Cd(C)) [18]. However, in our case an r-tuple
(η1, · · · , ηr) of strings of r-different colors can move continuously representing
the same element of the fundamental group,9 as long as the following situation
(∗)σ does not occur for each σ = {i1, · · · , is} ∈ I(KΣ):

(∗)σ The strings {ηi}i∈σ of s-different colors with multiplicity ≥ n pass
through a single point of the real line R.

(i) In the case K = C, we can continuously deform the strings (η1, · · · , ηr)
and, if necessary, make them pass through one another in C \R, so that any
collection of strings can be continuously deformed to a trivial one. Thus
π1(Q

D,Σ
n (C)) is trivial.

(ii) Let K = R. If n ≥ 2, a similar argument as above shows that the
fundamental group must be trivial, since any string of multiplicity ≥ n can be
split into stings of multiplicity less than n (by the continuous deformation).
Thus, the space QD,Σ

n (R) is path-connected and simply connected if n ≥ 2.
Next, consider the case n = 1 with rmin(Σ) ≥ 3. Then the space QD,Σ

1 (R)
is path-connected and it is simply connected. To see this, let σ ∈ I(KΣ) and
{i, j} ⊂ σ. Since card(σ) ≥ rmin(Σ) ≥ 3 (by (3.3)), there is some number
k ∈ σ such that k /∈ {i, j}. But this means that the i-th braid and the j-th
braid can pass through one another on the real line, as long as they both
don’t pass through the k-th braid at the same time. By using this fact, we
see that any collection of strings can be continuously deformed to a trivial
one. Thus, QD,Σ

1 (R) is path connected and that π1(Q
D,Σ
1 (R)) is trivial. Since

n ≥ 2 or n = 1 with rmin(Σ) ≥ 3 ⇔ (n, rmin(Σ)) 6= (1, 2), the assertion (ii)
follows.

Remark 7.2. The space QD,Σ
n (R) is not path-connected if (n, rmin(Σ)) =

(1, 2). But its each path-component is simply connected.
To see this, suppose that (n, rmin(Σ)) = (1, 2). Since rmin(Σ) = 2, there

has to exist σ ∈ I(KΣ) such that σ = {i, j} (by (3.3)). Since n = 1, this

9Let f(z) ∈ R[z] be a real coefficient polynomial and α ∈ C \ R be a complex root of
f(z) of multiplicity nα. Then f(z) has the root α of the same multiplicity nα. Thus, for
the case K = R, each string ηk moves symmetrically along the real axis R.
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means that particles on the real line corresponding to the i-th and the j-th
polynomial cannot cross one another on the real line (i.e. the i-th and the
j-th polynomials cannot have common real roots). Thus, QD,Σ

1 (R) is not
path-connected. However, since there are no restrictions on the movement
of roots (particles) within a connected component, each path-component is
simply connected.

Corollary 7.3. (i) If the condition (1.4)∗ holds, QD,Σ
n (C) is simply connected.

(ii) If the condition (1.4)† holds, QD,Σ
n (R) is simply connected.

Proof. The assertions follow from Lemma 7.1.

Lemma 7.4. (i) If k < 0, or k ≥ ⌊dmin

n
⌋+2, or k = 0 and s 6= 0, E1;K

k,s = 0.

(ii) If 1 ≤ k ≤ ⌊dmin

n
⌋ and s− k ≤ (d(K)nrmin(Σ)− 2)k − 1, E1;K

k,s = 0.

(iii) If k = ⌊dmin

n
⌋+1 and s−k ≤ (d(K)nrmin(Σ)−2)⌊dmin/n⌋−2, E1;K

k,s = 0.

Proof. The assertions follow from Lemmas 6.3 and 6.13.

Lemma 7.5. (i) If ⌊dmin

n
⌋ ≥ 2,

H̃i(Q
D,Σ
n (K);Z) = 0 for any i ≤ d(K)nrmin(Σ)− 3.

(ii) If ⌊dmin

n
⌋ = 1,

H̃i(Q
D,Σ
n (K);Z) = 0 for any i ≤ d(K)nrmin(Σ)− 4.

Proof. Let us write d′min = ⌊dmin

n
⌋. Consider the spectral sequences (6.10)

and (6.13). Define the integer a(k) by

a(k) = (d(K)nrmin(Σ)− 2)n0(k)− ǫ(k) for each 1 ≤ k ≤ d′min + 1,

where n0(k) and ǫ(k) denote the integers given by

(n0(k), ǫ(k)) =

{

(k, 1) if 1 ≤ k ≤ d′min,

(d′min, 2) if k = d′min + 1.

Then, by Lemma 7.4, we see that E1;K
k,s = 0 for any (k, s) 6= (0, 0) if s− k ≤

m0 = min{a(k) : 1 ≤ k ≤ d′min + 1} is satisfied. Hence, H̃k(Q
D,Σ
n (K);Z) = 0

for any k ≤ m0. However, we see that

m0 = min{a(k) : 1 ≤ k ≤ d′min + 1} = min{a(1), a(d′min + 1)}

=

{

d(K)nrmin(Σ)− 3 if d′min ≥ 2,

d(K)nrmin(Σ)− 4 if d′min = 1.

Hence, we obtain the assertions (i) and (ii).
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Corollary 7.6. (i) If n ≥ 2 and ⌊dmin

n
⌋ ≥ 2, QD,Σ

n (C) is (2nrmin(Σ) − 3)-
connected.

(ii) If n ≥ 2 and ⌊dmin

n
⌋ = 1, QD,Σ

n (C) is (2nrmin(Σ)− 4)-connected.
(iii) If n = 1 and dmin ≥ 2, QD,Σ

n (C) is (2rmin(Σ)− 3)-connected.
(iv) Let n = dmin = 1. Then QD,Σ

n (C) is (2rmin(Σ) − 4)-connected if
rmin(Σ) ≥ 3, and it is simply connected if rmin(Σ) = 2.

Proof. Since QD,Σ
n (C) is simply connected (by Lemma 7.1), the assertions

follow from the Hurewicz Theorem and Lemma 7.5.

Corollary 7.7. (i) If n ≥ 2 and ⌊dmin

n
⌋ ≥ 2, QD,Σ

n (R) is (nrmin(Σ) − 3)-
connected.

(ii) Let n ≥ 2 and ⌊dmin

n
⌋ = 1. Then QD,Σ

n (R) is (nrmin(Σ)− 4)-connected
if nrmin(Σ) ≥ 5, and it is simply connected if n = rmin(Σ) = 2.

(iii) Let n = 1, dmin ≥ 2. Then QD,Σ
n (R) is (rmin(Σ) − 3)-connected if

rmin(Σ) ≥ 4, and it is simply connected if rmin(Σ) = 3.
(iv) Let n = dmin = 1. Then QD,Σ

n (R) is (rmin(Σ) − 4)-connected if
rmin(Σ) ≥ 5, and it is simply connected if rmin(Σ) = 3 or 4.

Proof. If (n, rmin(Σ)) 6= (1, 2), the space QD,Σ
n (R) is simply connected (by

Lemma 7.1). Thus the assertions easily follow from he Hurewicz Theorem
and Lemma 7.5.

Corollary 7.8. Let a 6= 0r ∈ (Z≥0)
r.

(i) If the condition (1.4)∗ holds, the stabilization map

sD,D+a : QD,Σ
n (C)→ QD+a,Σ

n (C)

is a homotopy equivalence through dimension d(D; Σ, n,C).
(ii) If the condition (1.4)† holds, the stabilization map

sRD,D+a
: QD,Σ

n (R)→ QD+a,Σ
n (R)

is a homotopy equivalence through dimension d(D; Σ, n,R).
(iii) If the condition (1.4)† holds, the stabilization map

sD,D+a
: QD,Σ

n (C)→ QD+a,Σ
n (C)

is a Z2-equivariant homotopy equivalence through dimension d(D; Σ, n,R).

Proof. The assertions (i) and (ii) follow from Theorem 6.8, Corollaries 6.6
and 7.3. Since d(D; Σ, n,R) < d(D; Σ, n,C) and (sD,D+a)

Z2 = sRD,D+a
, the

assertion (iii) follows from (i) and (ii).
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8 Scanning maps

In this section we study about the configuration space model of QD,Σ
n (K) and

the corresponding scanning map.

8.1 Configuration space models. First, consider about the configuration
space model of QD,Σ

n (K).

Definition 8.1. For a positive integer d ≥ 1 and a based space X, let SPd(X)
denote the d-th symmetric product of X defined as the orbit space

(8.1) SPd(X) = Xd/Sd,

where the symmetric group Sd of d letters acts on the d-fold product Xd in
the natural manner.

Remark 8.2. (i) Note that an element η ∈ SPd(X) may be identified with
a formal linear combination

(8.2) η =
s

∑

k=1

nkxk,

where {xk}sk=1 ∈ Cs(X) and {nk}sk=1 ⊂ N with
∑s

k=1 nk = d. In this situation
we shall refer to η as configuration (or divisor) of points, the point xk ∈ X
having a multiplicity nk.

(ii) For example, when X = C, we have the natural homeomorphism

(8.3) ψd : P
C
d

∼=−→ SPd(C)

given by using the above identification

(8.4) ψd(f(z)) =

s
∑

k=1

dkαk for f(z) =
∏s

k=1(z − αk)
dk ∈ PC

d .

Definition 8.3. (i) For a subspace A ⊂ X , let SPd(X,A) denote the quotient
space

(8.5) SPd(X,A) = SPd(X)/ ∼

where the equivalence relation ∼ is defined by

(8.6) ξ ∼ η ⇔ ξ ∩ (X \ A) = η ∩ (X \ A) for ξ, η ∈ SPd(X).
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Thus, the points of A are ignored. When A 6= ∅, by adding a point in A
we have the natural inclusion SPd(X,A) ⊂ SPd+1(X,A). Thus, when A 6= ∅,
one can define the space SP∞(X,A) by the union

(8.7) SP∞(X,A) =
⋃

d≥0

SPd(X,A),

where we set SP0(X,A) = {∅} and ∅ denotes the empty configuration.
(ii) From now on, we always assume that X ⊂ C. For each r-tuple

D = (d1, · · · , dr) ∈ Nr, let SPD(X) =
∏r

i=1 SP
di(X), and define the space

QΣ
D,n(X) by

QΣ
D,n(X) = {(ξ1, · · · , ξr) ∈ SPD(X) : the condition (∗)Σn holds},(8.8)

where the condition (∗)Σn is given by

(∗)Σn : The configuration (
⋂

k∈σ ξk)∩R contains no point x ∈ X of multiplicity
≥ n for any σ ∈ I(KΣ).

(iii) When A ⊂ X is a subspace, define an equivalence relation “∼” on
the space QΣ

D,n(X) by

(ξ1, · · · , ξr) ∼ (η1, · · · , ηr) if ξi ∩ (X \ A) = ηi ∩ (X \A)

for each 1 ≤ j ≤ r. Let QΣ
D,n(X,A) be the quotient space defined by

(8.9) QΣ
D,n(X,A) = QΣ

D,n(X)/ ∼ .

When A 6= ∅, by adding points in A we have natural inclusion

(8.10) QΣ
D,n(X,A) ⊂ QΣ

D+ei,n
(X,A) for each 1 ≤ i ≤ r,

where D + e i = (d1, · · · , di−1, di + 1, di+1, · · · , dr).
Thus, when A 6= ∅, one can define the space QΣ

n (X,A) by the union

(8.11) QΣ
n (X,A) =

⋃

D∈Nr

QΣ
D,n(X,A),

where the empty configuration (∅, · · · , ∅) is the base-point of QΣ
n (X,A).

Remark 8.4. (i) Let D = (d1, · · · , dr) ∈ Nr. Then by using the identifica-
tion (8.3) we easily obtain the homeomorphism

(8.12)
QD,Σ

n (C)
ΨD−−−→
∼=

QΣ
D,n(C)

(f1(z), · · · , fr(z)) −−−→ (ψd1(f1(z)), · · · , ψdr(fr(z)))
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(ii) Now let ϕD : C
∼=−→ UD and xD = (xD,1, · · · , xD,r) ∈ F (C \ UD, r)

be the homeomorphism and the point for defining the stabilization map sD
given in Definition 5.1. Then define the map

sΣD : QΣ
D,n(C)→ QΣ

D+e,n(C) by(8.13)

sΣD(ξ1, · · · , ξr) = (ϕD(ξ1) + xD,1, · · · , ϕD(ξr) + xD,r)

for (ξ1, · · · , ξr) ∈ QΣ
D,n, where we write ϕD(ξ) =

∑s
k=1 nkϕD(xk) if ξ =

∑s
k=1 nkxk ∈ SPd(C) and (nk, xk) ∈ N× C with

∑s
k=1 nk = d.

Then by using the above homeomorphism (8.12), we have the following
commutative diagram

(8.14)

QD,Σ
n (C)

sD,D+e−−−−→ QD+e,Σ
n (C)

ΨD





y

∼= ΨD+e





y

∼=

QΣ
D,n(C)

sΣ
D−−−→ QΣ

D+e,n(C)

(iv) Note that QΣ
D,n(C) is path-connected. Indeed, for any two points

ξ0, ξ1 ∈ QΣ
D,n(C), one can construct a path ω : [0, 1] → QΣ

D,n(C) such that
ω(i) = ξi for i ∈ {0, 1} by using the string representation used in [16,
§Appendix]. Thus the space QD,Σ

n (C) is also path-connected. By choosing
the path ω Z2-equivariant way, one can show that QD,Σ

n (R) is also path-
connected if n ≥ 2 or if n = 1 and rmin(Σ) ≥ 3 ⇔ (n, rmin(Σ)) 6= (1, 2) (see
also the proof of Lemma 7.1 and Remark 7.2).

Definition 8.5. Define the stabilized space QΣ
D+∞(C) by the colimit

(8.15) QD+∞,Σ
n (C) = lim

k→∞
QD+ke,Σ

n (C),

where the colimit is taken from the family of stabilization maps

(8.16) {sD+ke,D+(k+1)e : Q
D+ke,Σ
n (C)→ QΣ,D+(k+1)e

n (C)}k≥0

8.2 Scanning maps. Now we are ready to define the scanning map. From
now on, we identify C = R2 in a usual way.

Definition 8.6. For a rectangle X in C = R2, let σX denote the union of the
sides of X which are parallel to the y-axis, and for a subspace Z ⊂ C = R2,
let Z be the closure of Z. From now on, let I denote the interval I = [−1, 1]
and let 0 < ǫ < 1

1000000
be any fixed real number.
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For each x ∈ R, let V (x) be the set defined by

V (x) = {w ∈ C : |Re(w)− x| < ǫ, |Im(w)| < 1}(8.17)

= (x− ǫ, x+ ǫ)× (−1, 1),

and let’s identify I × I = I2 with the closed unit rectangle {t+ s
√
−1 ∈ C :

−1 ≤ t, s ≤ 1} in C.
For each D = (d1, · · · , dr) ∈ Nr, define the horizontal scanning map

(8.18) scD : QΣ
D,n(C)→ ΩQΣ

n (I
2, ∂I × I) = ΩQΣ

n (I
2, σI2)

as follows. For each r-tuple α = (ξ1, · · · , ξr) ∈ QΣ
D,n(C) of configurations, let

scD(α) : R→ QΣ
n (I

2, ∂I × I) = QΣ
n (I

2, σI2) denote the map given by

R ∋ x 7→ (ξ1 ∩ V (x), · · · , ξr ∩ V (x)) ∈ QΣ
n (V (x), σV (x)) ∼= QΣ

n (I
2, σI2),

where we use the canonical identification (V (x), σV (x)) ∼= (I2, σI2).

Since lim
x→±∞

scD(α)(x) = (∅, · · · , ∅), by setting scD(α)(∞) = (∅, · · · , ∅)
we obtain a based map scD(α) ∈ ΩQΣ

n (I
2, σI2), where we identify S1 =

R ∪∞ and we choose the empty configuration (∅, · · · , ∅) as the base-point
of QΣ

n (I
2, σI2). One can show that the following diagram is homotopy com-

mutative:

(8.19)

QΣ
D+ke,n(C)

scD+ke−−−−→ ΩQΣ
n (I

2, σI2)

sΣ
D+ke





y
‖

QΣ
D+(k+1)e ,n(C)

scD+(k+1)e−−−−−−→ ΩQΣ
n (I

2, σI2)

By using the above diagram and by identifying QD+ke,Σ
n (C) with QΣ

D+ke,n(C),
we finally obtain the stable horizontal scanning map

(8.20) SH = lim
k→∞

scD+ke : QD+∞,Σ
n (C)→ ΩQΣ

n (I
2, σI2),

where QD+∞,Σ
n (C) is defined in (8.15).

Theorem 8.7 ([31], (cf. [14], [25])). The stable horizontal scanning map

SH : QD+∞,Σ
n (C) ≃−→ ΩQΣ

n (I
2, σI2)

is a homotopy equivalence.

Proof. The proof is analogous to the one given in [31, Prop. 3.2, Lemma
3.4] and [14, Prop. 2]. However, as it appears to be probably most difficult
and least familiar part of the article [31], we gave its precise proof in [25,
Theorem 5.6] (see also [25, Remark 5.8]).

37



Definition 8.8. (i) Define the stabilized space QΣ
D+∞(R) by the colimit

(8.21) QD+∞,Σ
n (R) = lim

k→∞
QD+ke,Σ

n (R),

where the colimit is taken from the family of stabilization maps

(8.22) {sRD+ke,D+(k+1)e : QD+ke,Σ
n (R)→ QΣ,D+(k+1)e

n (R)}k≥0.

(ii) Recall the Z2-action on the space QD,Σ
n (C) induced from the complex

conjugation on C. Then by using (5.11), one can easily see the following:

(8.23) QD+∞
n (R) = (QD+∞

n (C))Z2 .

Moreover, since sRD,k = (sD,k)
Z2 as in Remark 5.4, one can define the hori-

zontal scanning map

(8.24) SZ2 = lim
k→∞

(scD+ke)
Z2 : QD+∞,Σ

n (R)→ ΩQΣ
n (I

2, σI2)Z2

in a complete similar way as (8.20).
Since QD,Σ

n (R) = QD,Σ
n (C)Z2 ⊂ QD,Σ

n (C), one can identify the space
QD+∞,Σ

n (R) with the subspace of QD+∞,Σ
n (C). By this identification, we can

identify

(8.25) QD+∞,Σ
n (R) = QD+∞,Σ

n (C)Z2 and SZ2 = SH |QD+∞,Σ
n (R) = (SH)Z2 .

Theorem 8.9 ([31], (cf. [14], [25])). The stable horizontal scanning map

(SH)Z2 : QD+∞,Σ
n (R) ≃−→ ΩQΣ

n (I
2, σI2)Z2

is a homotopy equivalence if (n, rmin(Σ)) 6= (1, 2).

Proof. Note that QD,Σ
n (R) is simply connected if (n, rmin(Σ)) 6= (1, 2). The

proof is completely analogous to that of Theorem 8.7.

Corollary 8.10. The stable horizontal scanning map

SH : QD+∞,Σ
n (C) ≃−→ ΩQΣ

n (I
2, σI2)

is a Z2-equivariant homotopy equivalence if (n, rmin(Σ)) 6= (1, 2).

Proof. The assertion follows from Theorems 8.7 and 8.9.
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9 The stable result

In this section we prove the stable theorem (Theorem 9.2).

Definition 9.1. From now on, let e = (a1, · · · , ar) ∈ Nr be any fixed an
r-tuple of positive integers such that

∑r
k=1 aknk = 0m.

Let D = (d1, · · · , dr) ∈ Nr be an r-tuple of positive integers such that
∑r

k=1 dknk = 0m. Then it is easy to see that the following two diagram is
homotopy commutative for K = R or C:

QD,Σ
n (K)

jD,n,K−−−→ ΩZKΣ
(Kn, (Kn)∗) ≃ ΩZKΣ

(Dd(K)n, Sd(K)n−1)

sKD,D+e





y
‖

QD+e,Σ
n (K)

jD+e,n,K−−−−−→ ΩZKΣ
(Kn, (Kn)∗) ≃ ΩZKΣ

(Dd(K)n, Sd(K)n−1)

where we set

(9.1) sKD,D+e
= sD,D+e

if K = C.

Hence, for K = R or C, we obtain the stabilized map

(9.2) jD+∞,n,K : QD+∞,Σ
n (K)→ ΩZKΣ

(Dd(K)n, Sd(K)n−1),

where we set

(9.3) jD+∞,n,K = lim
t→∞

jD+te ,D+(t+1)e ,K.

The main purpose of this section is to prove the following result.

Theorem 9.2. Let K = R or C, and let D = (d1, · · · , dr) ∈ Nr be an r-tuple
of positive integers such that

∑r
k=1 dknk = 0m. Then the stabilized map

jD+∞,n,K : QD+∞,Σ
n (K)

≃−→ ΩZKΣ
(Dd(K)n, Sd(K)n−1)

is a homotopy equivalence.

Before proving Theorem 9.2 we need the following definition and lemma.

Definition 9.3. Let K = R or C as before. Now we identify C = R2 in
a usual way and let us write U = {w ∈ C : |Re(w)| < 1, |Im(w)| < 1} =
(−1, 1)× (−1, 1) and I = [−1, 1].

(i) For an open set X ⊂ C, let FK
n (X) denote the space of r-tuples

(f1(z), · · · , fr(z)) ∈ K[z]r of (not necessarily monic) polynomials satisfying
the following condition (∗)n,R:
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(∗)n,R For any σ = {i1, · · · , is} ∈ I(KΣ), the polynomials fi1(z), · · · , fis(z)
have no common real roots of multiplicity ≥ n in X (i.e. no common
roots of multiplicity ≥ n in X).

(ii) Let ev0,K : FK
n (U)→ ZKΣ

(Kn, (Kn)∗) denote the map given by evalu-
ation at 0, i.e.

(9.4) ev0,K(f1(z), · · · , fr(z)) = (Fn(f1)(0), · · · , Fn(fr)(0))

for (f1(z), · · · , fr(z)) ∈ FK
n (U), where Fn(fi)(z) denotes the n-tuple of monic

polynomials of the same degree di given by (4.6).

(iii) Let F̃K
n (U) ⊂ FK

n (U) denote the subspace of all (f1(z), · · · , fr(z)) ∈
FΣ,K
n (U) such that no fi(z) is identically zero.
Let evK : F̃K

n (U)→ ZKΣ
(Kn, (Kn)∗) denote the map given by the restric-

tion

(9.5) evK = ev0,K|F̃K
n (U).

It is easy to see that the following two equality holds:

(9.6) evR = (evC)
Z2 .

(iv) Note that the group Tr
K = (K∗)r acts freely on the space F̃K

n (U) in a
natural way, and let

(9.7) pK : F̃K
n (U)→ F̃K

n (U)/T
r
K

denote the natural projection, where F̃K
n (U)/T

r
K denotes the corresponding

orbit space.

Lemma 9.4. Let XΣ be a simply connected non-singular toric variety such
that the condition (2.18)∗ is satisfied.

(i) If the condition (1.4)∗ is satisfied, the space QD+∞,Σ
n (C) is simply

connected. Similarly, if the condition (1.4)† is satisfied, the space QD+∞,Σ
n (R)

is simply connected.
(ii) The map evK : F̃K

n (U)
≃−→ ZKΣ

(Kn, (Kn)∗) is a homotopy equivalence.

Proof. (i) The assertion easily follows from Corollary 7.3.
(ii) For each b = (b0, b1, · · · , bn−1) ∈ Kn, let fb(z) ∈ K[z] denote the

polynomial of degree ≤ n defined by

(9.8) fb(z) = b0 +
n−1
∑

k=1

bk − b0
k!

zk.
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Let i0 : ZKΣ
(Kn, (Kn)∗)→ FK

n (U) be the inclusion map given by

(9.9) i0(b1, · · · , br) =
(

fb1(z), · · · , fbr
(z)

)

for (b1, · · · , br) ∈ ZKΣ
(Kn, (Kn)∗). Since the degree of each polynomial fb1(z)

has at most n − 1, it has no root of multiplicity ≥ n. Thus, the map i0 is
well-defined, and clearly the equality ev0 ◦ i0 = id holds.

Let f : FK
n (U)× [0, 1]→ FK

n (U) be the homotopy given by

f((f1, · · · , ft), t) = (f1,t(z), · · · , fr,t(z)),

where fi,t(z) = fi(tz). This gives a homotopy between the map i0 ◦ ev0,K and
the identity map, and this proves that the map

ev0,K : FK
n (U)

≃−→ ZKΣ
(Kn, (Kn)∗)

is a deformation retraction. Since FK
n (U) is an infinite dimensional manifold

and F̃K
n (U) is a closed submanifold of FK

n (U) of infinite codimension, it follows
from [12, Theorem 2] that the inclusion

(9.10) iΣ,K
n : F̃K

n (U)
≃−→ FK

n (U)

is a homotopy equivalence. Hence the restriction evK = ev0,K ◦ iΣ,K
n is also a

homotopy equivalence.

Definition 9.5. Note that (U, σU) = (I2, σI2) = (I × I, ∂I × I). Let

(9.11)

{

wC
n : F̃C

n (U)→ QΣ
n (U, σU) = QΣ

n (I
2, σI2)

wR
n : F̃R

n (U)→ QΣ
n (U, σU)

Z2 = QΣ
n (I

2, σI2)Z2

denote the natural maps which assigns to an r-tuple (f1(z), · · · , fr(z)) ∈
F̃K
n (U) (K = C or R) the r-tuple of their configurations represented by their

real roots which lie in U = I2. These maps clearly induce the maps

(9.12)

{

vCn : F̃C
n (U)/T

r
C → QΣ

n (U, σU) = QΣ
n (I

2, σI2)

vRn : F̃R
n (U)/T

r
R → QΣ

n (U, σU)
Z2 = QΣ

n (I
2, σI2)Z2

such that the following diagram is commutative:

F̃C
n (U)

wC
n−−−→ QΣ

n (U, σU) ←−−−
⊃

QΣ
n (U, σU)

Z2
wR

n←−−− F̃R
n (U)

pC
R





y
‖ ‖ pR

R





y

F̃C
n (U)/T

r
C

vCn−−−→ QΣ
n (U, σU) ←−−−

⊃
QΣ

n (U, σU)
Z2

vRn←−−− F̃R
n (U)/T

r
R
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Lemma 9.6. Any fiber of the map wK
n is homotopy equivalent to the space

Tr
K.

Proof. Any fiber of the map wK
n is homeomorphic to the space fib(r) con-

sisting of all r-tuples (f1(z), · · · , fr(z)) ∈ K[z]r of K-coefficients polynomials
such that each polynomial fi(z) has no root in U . It suffices to show that
there is a homotopy equivalence

(9.13) fib(r) ≃ Tr
K.

First define the inclusion map j0 : Tr
K → fib(r) by j0(x) = (x1, · · · , xr)

for x = (x1, · · · , xr) ∈ Tr
K. Next, let f = (f1(z), · · · , fr(z)) ∈ fib(r) be

any element. Since 0 ∈ U , (f1(0), · · · , fr(0)) ∈ Tr
K. Hence, one can define

the evaluation map ǫ0 : fib(r) → Tr
K by ǫ0(f) = (f1(0), · · · , fr(0)) for f =

(f1(z), · · · , fr(z)) ∈ fib(r). It is easy to see that ǫ0 ◦ j0 = idTr
K
.

Now consider the map j0 ◦ ǫ0. Note that if a polynomial g(z) ∈ K[z] has
a root α ∈ C\U and 0 < t ≤ 1, the polynomial g(tz) has a root α/t ∈ C\U .
Thus, one can define the homotopy F : fib(r)× [0, 1]→ fib(r) by F (f, t) =
(f1(tz), · · · , fr(tz)) for (f, t) = ((f1(z), · · · , fr(z)), t) ∈ fib(r) × [0, 1]. It is
easy to see that the map F gives a homotopy between the maps j0 ◦ ǫ0 and
idfib(r). Hence, we see that the map ǫ0 : fib(r)

≃−→ Tr
K is a desired homotopy

equivalence.

Lemma 9.7. The map wC
n : F̃C

n (U) → QΣ
n (U, σU) is a quasifibration with

fiber Tr
C. Similarly, the map wR

n : F̃R
n (U) → QΣ

n (U, σU)
Z2 is a quasifibration

with fiber Tr
R.

Proof. Since the proof is completely analogous, we give the proof only for the
map wC

n . The assertion may be proved by using the well-known Dold-Thom
criterion. Recall that the base space B = QΣ

n (U, σU) consists of r-tuple of
divisors (or configurations) (ξ1, · · · , ξr) satisfying the condition

(†)Σ The configuration (∩k∈σξk)∩R∩ (U \ σU) does not contains no points
of multiplicity ≥ n for any σ ∈ I(KΣ).

For each r-tuple (d1, · · · , dr) ∈ (Z≥0)
r of non-negative integers, we denote

by B≤d1,··· ,≤dr the subspace of B consisting of all r-tuples (ξ1, · · · , ξr) ∈ B
satisfying the condition

(9.14) deg(ξk ∩ R ∩ (U \ σU)) ≤ dk for each 1 ≤ k ≤ r.

We filter the base space B by an increasing family of subspaces {B≤d1,··· ,≤dr}.
It suffices to prove that each restriction

(9.15) wn|w−1
n (B≤d1,··· ,≤dr) : w

−1
n (B≤d1,··· ,≤dr)→ B≤d1,··· ,≤dr
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is a quasifibration. Its proof is essentially completely analogous to that of
[25, Lemma 5.13] (cf. [31, Lemmas 3.3, 3.4]). The difference is only the
condition which we treated. In the case of [25, Lemma 5.13], we consider
the m-tuple (ξ1, · · · , ξm) of configurations which satisfies the condition (†)1,
where

(†)1 The configuration (∩mk=1ξk)∩R∩ (U \ σU) does not contains no points
of multiplicity ≥ n.

On the other hand, in our case, we need to consider r-tuple (ξ1, · · · , ξr) of
configurations satisfying the condition (†)Σ. If we replace by the condition
(†)Σ in the proof of [25, Lemma 5.13], we can prove that each restriction
(9.15) is a quasifibration by the completely identical similar way. So we omit
the detail.

Corollary 9.8. The map vCn : F̃C
n (U)/T

r
C

≃−→ QΣ
n (U, σU) is a homotopy

equivalence. Similarly, the map vRn : F̃R
n (U)/T

r
R

≃−→ QΣ
n (U, σU)

Z2 is also a
homotopy equivalence.

Proof. Since the proof is completely analogous, we give the proof only for the
map vCn . Let Fn denote the homotopy fiber of the map wC

n . It follows from
[8, Lemma 2.1] that there is the following homotopy commutative diagram

(9.16)

Tr
C −−−→

=
Tr
C −−−→ ∗

‖




y





y

Tr
C −−−→ F̃C

n (U)
wC

n−−−→ QΣ
n (U, σU)





y

pC





y
‖

Fn −−−→ F̃C
n (U)/T

r
C

vCn−−−→ QΣ
n (U, σU)

where all above vertical and horizontal sequences are fibration sequences. By
this diagram, we easily see that Fn is contractible. Thus, vCn is a homotopy
equivalence.

Now we can give the proof of Theorem 9.2.

Proof of Theorem 9.2. First, we shall prove the assertion for case K = C.
It follows from Lemma 9.4 and Lemma 3.6 that two spaces QD+∞,Σ

n (C) and
ΩZKΣ

(D2n, S2n−1) are simply connected. Thus, it suffices to prove that the
map jD+∞,n,C induces an isomorphism

(jD+∞,n,C)∗ : πk(Q
D+∞,Σ
n (C))

∼=−→ πk(ΩZKΣ
(D2n, S2n−1)) for any k ≥ 2.
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Let us identify C = R2 and let U = (−1, 1) × (−1, 1) as before. Define the
scanning map scan : F̃C

n (C)→ Map(R, F̃C
n (U)) by

(9.17) scan(f1(z), · · · , fr(z))(w) = (f1(z + w), · · · , fr(z + w))

for (f1(z), · · · , fr(z)), w) ∈ F̃C
n (C)× R, and consider the diagram

F̃C
n (U)

evC−−−→
≃

ZKΣ
(D2n, S2n−1)

pC





y

F̃C
n (U)/T

r
C

vCn−−−→
≃

QΣ
n (U, σU)

This induces the commutative diagram below

F̃C
n (C)

scan−−−→ Map(R, F̃C
n (U))

(evC)#−−−−→
≃

Map(R,ZKΣ
(D2n, S2n−1))

pC





y

(pC)#





y

F̃C
n (C)/T

r
C

scan−−−→ Map(R, F̃C
n (U)/T

r
C)

(vCn)#−−−→
≃

Map(R,QΣ
n (U, σU))

Observe that Map(R, ·) can be replaced by Map∗(S1, ·) by extending from R
to S1 = R ∪∞ (as base-point preserving maps). Thus by setting
{

ĵD,n,C : QD,Σ
n (C) ⊂−→ F̃C

n (C)
scan−→ Map∗(S1, F̃C

n (U)) = ΩF̃C
n (U)

ĵ′D,n,C : EΣ,R
D,n(C)

⊂−→ F̃C
n (C)

scan−→ Map∗(S1, F̃C
n (U)/T

r
C) = Ω(F̃C

n (U)/T
r
C)

we obtain the following commutative diagram

(9.18)

QD,Σ
n (C)

ĵD,n,C−−−→ ΩF̃C
n (U)

ΩevC−−−→
≃

ΩZKΣ
(D2n, S2n−1)

∼=





y

ΩpC





y

QΣ
D,n(C)

ĵ′
D,n,C−−−→ Ω(F̃C

n (U)/T
r
C)

ΩvCn−−−→
≃

ΩQΣ
n (U, σU)

If we identify QD+∞,Σ
n (C) with the colimit lim

t→∞
QΣ

D+te ,n(C), by replacing D

by D + te (t ∈ N) and letting t → ∞, we obtain the following homotopy
commutative diagram:

(9.19)

QD+∞,Σ
n (C)

̂jD+∞,n,C−−−−−→ ΩF̃C
n (U)

ΩevC−−−→
≃

ΩZKΣ
(D2n, S2n−1)

‖ ΩpC





y

QD+∞,Σ
n (C)

̂j′
D+∞,n,C−−−−−→ Ω(F̃C

n (U)/T
r
C)

ΩvCn−−−→
≃

ΩQΣ
n (U, σU)
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where we set ̂jD+∞,n,C = lim
t→∞

̂jD+te ,n,C and ̂j′D+∞,n,C = lim
t→∞

̂j′D+te,n,C.

Since (ΩevC) ◦ ̂jD+te,n,C = jD+te,n,C and (ΩvCn ) ◦ ̂j′D+te,n,C = scD+te (by iden-

tifying QD+te,Σ
n (C) with the space EΣ

D+te ,n(C)), we also obtain the following
two equalities:

(9.20) jD+∞,n,C = (ΩevC) ◦ ̂jD+∞,n,C, SH = (ΩvCn ) ◦ ̂j′D+∞,n,C.

Since the map evC is a homotopy equivalence, it suffices to prove that the
map

(††)C ̂jD+∞,n,C : QD+∞,Σ
n (C) −→ ΩF̃C

n (U)

induces an isomorphism on the homotopy group πk( ) for any k ≥ 2.

Since SH = (ΩvCn ) ◦ ̂j′D+∞,n,C and ΩvCn are homotopy equivalences (by

Theorem 8.7 and Corollary 9.8), the map ̂j′D+∞,n,C is a homotopy equivalence.
Since pC is a fibration with fiber Tr

C, the map ΩpC induces an isomorphism
on the homotopy group πk( ) for any k ≥ 2. Hence, by using the equality

(ΩpC) ◦ ̂jD+∞,n,C = ̂j′D+∞,n,C (up to homotopy equivalence), we see that the

map ̂jD+∞,n,C is induces an isomorphism on the homotopy group πk( ) for
any k ≥ 2. This completes the proof for the case K = C.

Next, consider the case K = R. Note that the proof is almost identical to
the case K = C. However, since ΩpR is a homotopy equivalence, the proof is
easier than that of the case K = C.

Define the scanning map sca : F̃R
n (C)→ Map(R, F̃R

n (U)) by

(9.21) sca(f1(z), · · · , fr(z))(w) = (f1(z + w), · · · , fr(z + w))

for (f1(z), · · · , fr(z)), w) ∈ F̃R
n (C)× R. Now consider the diagram

F̃R
n (U)

evR−−−→
≃

ZKΣ
(Dn, Sn−1)

pR





y

F̃R
n (U)/T

r
R

vRn−−−→
≃

QΣ
n (U, σU)

Z2

This induces the commutative diagram below

F̃R
n (C)

sca−−−→ Map(R, F̃R
n (U))

(evR)#−−−−→
≃

Map(R,ZKΣ
(Dn, Sn−1))

pR





y

(pR)#





y

F̃R
n (C)/T

r
R

sca−−−→ Map(R, F̃R
n (U)/T

r
R)

(vRn)#−−−→
≃

Map(R,QΣ
n (U, σU)

Z2)
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Observe that Map(R, ·) can be replaced by Map∗(S1, ·) by extending from R
to S1 = R ∪∞ (as base-point preserving maps). Thus by setting

{

ĵD,n,R : QD,Σ
n (R) ⊂−→ F̃R

n (C)
sca−→ ΩF̃R

n (U)

ĵ′D,n,R : QΣ
D,n(C)

Z2
⊂−→ F̃R

n (C)
sca−→ Ω(F̃R

n (U)/T
r
R)

we obtain the following commutative diagram

(9.22)

QD,Σ
n (R)

ĵD,n,R−−−→ ΩF̃R
n (U)

ΩevR−−−→
≃

ΩZKΣ
(Dn, Sn−1)

∼=





y

ΩpR





y

≃

QΣ
D,n(C)

Z2
ĵ′
D,n,R−−−→ Ω(F̃R

n (U)/T
r
R)

ΩvRn−−−→
≃

ΩQΣ
n (U, σU)

Z2

If we identify QD+∞,Σ
n (R) with the colimit lim

t→∞
QΣ

D+te ,n(C)
Z2, by replacing D

by D + te (t ∈ N) and letting t → ∞, we obtain the following homotopy
commutative diagram:

(9.23)

QD+∞,Σ
n (R)

̂jD+∞,n,R−−−−−→ ΩF̃R
n (U)

ΩevR−−−→
≃

ΩZKΣ
(Dn, Sn−1)

‖ ΩpR





y

≃

QD+∞,Σ
n (R)

̂j′
D+∞,n,R−−−−−→ Ω(F̃R

n (U)/T
r
R)

ΩvRn−−−→
≃

ΩQΣ
n (U, σU)

Z2

where we set ̂jD+∞,n,R = lim
t→∞

̂jD+te ,n,R and ̂j′D+∞,n,R = lim
t→∞

̂j′D+te,n,R.

Since (ΩevR)◦ ̂jD+te,n,R = jD+te,n,R and (ΩvRn )◦ ̂j′D+te,n,R = (scD+te)
Z2 , we also

obtain the following two equalities:

(9.24) jD+∞,n,R = (ΩevR) ◦ ̂jD+∞,n,R, (SH)Z2 = (ΩvRn ) ◦ ̂j′D+∞,n,R.

Since the map evR is a homotopy equivalence, it suffices to prove that the
map

(††)R ̂jD+∞,n,R : QD+∞,Σ
n (C) −→ ΩF̃R

n (U)

is a homotopy equivalence.

Since (SH)Z2 = (ΩvRn ) ◦ ̂j′D+∞,n,R and ΩvRn are homotopy equivalences (by

Theorem 8.9 and Corollary 9.8), the map ̂j′D+∞,n,C is a homotopy equivalence.
On the other hand, since pR is a covering projection with fiber (Z2)

r, the map
ΩpR is a homotopy equivalence. Hence, by using the diagram (9.23), we see

that the map ̂jD+∞,n,R is a homotopy equivalence. This completes the proof
of Theorem 9.2.
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10 Proofs of the main results

Now we give the proofs of the main results (Theorems 2.14, 2.15, and Corol-
lary 2.16).

Proofs of Theorem 2.14. (i) Suppose that
∑r

k=1 dknk = 0n. Then the asser-
tion (i) easily follows from Corollary 7.8 and Theorem 9.2.

(ii) Next assume that
∑r

k=1 dknk 6= 0n. Recall from (2.18)∗ that there is
an r-tuple D∗ = (d∗1, · · · , d∗r) ∈ Nr such that

∑r
k=1 d

∗
knk = 0n. If we choose a

sufficiently large integer m0 ∈ N, then the condition dk < m0d
∗
k holds for each

1 ≤ k ≤ r. Then consider the map jD,n,C : QD,Σ
n (C) → ΩZKΣ

(D2n, S2n−1)
defined by

(10.1) jD,n,C = jD0,n,C ◦ sD,D0,

where D0 = m0D∗ = (m0d
∗
1, m0d

∗
2, · · · , m0d

∗
r) and jD,n,C is given by the

composite of the following maps

(10.2) jD,n,C : QD,Σ
n (C)

sD,D0−→ QD0,Σ
n (C)

jD0,n,C−→ ΩZKΣ
(D2n, S2n−1).

Since the maps sD,D0 and jD0,C are homotopy equivalences through dimen-
sions d(D; Σ, n,C) and d(D0; Σ, n,C), respectively (by Corollary 7.8 and
Theorem 2.14), by using d(D; Σ, n,C) ≤ d(D0; Σ, n,C) the map jD,n,C is
a homotopy equivalence through dimension d(D; Σ, n,C).

Proof of Theorem 2.15. (i) Suppose that
∑r

k=1 dknk = 0n. Then the asser-
tion (i) easily follows from Corollary 7.8 and Theorem 9.2.

(ii) This is proved completely analogous way as that of (ii) of Theorem
2.14. Indeed, under the same assumption as (ii) of the proof of Theorem
2.14, we define the map jD,n,R : QD,Σ

n (R)→ ΩZKΣ
(Dn, Sn−1) by

(10.3) jD,n,R = jD0,n,R ◦ sRD,D0
.

Since d(D; Σ, n,R) ≤ d(D0; Σ, n,R), it is easy to see that this map is a
homotopy equivalence through dimension d(D; Σ, n,R).

Proof of Corollary 2.16. Consider the map of composite

ΩZKΣ
(D2n, S2n−1)

≃−→ ΩZKΣ
(Cn, (Cn)∗)

Ωqn,C−→ ΩXΣ(n).

Since Ωqn,C is a universal covering (by Corollary 3.10), the assertions easily
follow from Theorem 2.14.
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