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Abstract

Na-ion batteries (NIBs) are increasingly looked at as a viable alternative to Li-ion batteries due to

the abundance, low cost, and thermal stability of Na-based systems. To improve the practical utilization

of NIBs in applications, it is important to boost the energy and power densities of the electrodes being

used, via discovery of novel candidate materials. Thus, we explore the chemical space of transition metal

containing oxyfluorides (TMOFs) that adopt the perovskite structure as possible NIB electrodes. Our

choice of the perovskite structure is motivated by the ‘large’ cationic tunnels that can accommodate

Na+, while the chemistry of TMOFs is motivated by the high electronegativity and inductive effect of

F−, which can possibly lead to higher voltages. We use density functional theory based calculations to

estimate the ground state polymorphs, average Na (de)intercalation voltages, thermodynamic stabilities

and Na+ mobility on two distinct sets of compositions: the F-rich NaxMOF2, and the O-rich Na1+xMO2F

where x = 0–1 and M = Ti, V, Cr, Mn, Fe, Co, or Ni. Upon identifying the ground state polymorphs

in the charged compositions (i.e., MOF2 and NaMO2F), we show that F-rich perovskites exhibit higher

average voltages compared to O-rich perovskites. Also, we find six stable/metastable perovskites in the

F-rich space, while all O-rich perovskites (except NaTiO2F) are unstable. Finally, our Na-ion mobility

calculations indicate that TiOF2-NaTiOF2, VOF2-NaVOF2, CrOF2, and NaMnOF2 can be promising

compositions for experimental exploration as NIB cathodes, primarily if used in a strained electrode

configuration and/or thin film batteries. Our computational approach and findings provide insights into

developing practical NIBs involving fluorine-containing intercalation frameworks.

1 Introduction

Na-ion battery (NIB) technology is a key contributor in reducing the extensive dependence on Li-ion

batteries (LIBs) to fulfil the ever-increasing energy demands. [1–5] As a technology, NIBs have come a long

way with notable applications in both electric vehicles and stationary energy storage. [6–9] Nevertheless, the

practical utility of NIBs can be further enhanced with the development of novel high energy and power density

electrode materials. While layered transition-metal oxides (TMOs) are the state-of-the-art NIB positive

electrodes (cathodes), [10] the structural instabilities of layered compounds at their fully desodiated states

and detrimental phase transitions have directed research towards polyanionic cathode frameworks. [11–13]

Some of the most explored polyanionic frameworks, such as the sodium superionic conductors (NaSICONs),

alluaudites, olivines, and pyro/fluoro-phosphates display a wide range of electrochemical performance and

good structural stability, with low gravimetric capacity being a common impediment. [12] Thus, an ideal NIB
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cathode must be able to (de)intercalate the large Na+ at high rates, without compromising on structural

stability, and deliver a large capacity for achieving both high energy and power densities. An ideal NIB

negative electrode (anode) has similar requirements as the ideal cathode as well.

Oxide perovskites, which have a general formula of ABO3, where A and B are cations, have been explored

for several non-energy-storage applications, due to their structural stability and compositional flexibility.

[14–18] Importantly, perovskites are suitable structures for accommodating Na+ because of their rigid open

structures with large voids. [19] Additionally, incorporation of fluorides in cathode frameworks often leads to

improved energy densities, since the higher electronegativity of F− typically leads to a higher (de)intercalation

voltage via the induction effect. [20–22] Indeed, many of the best-performing polyanionic NIB cathodes

contain fluorine. [23–25] Thus, fixing the A cation in a perovskite as Na+, the B cation to be a redox-active

3d transition metal (TM), and the anions being a mixture of both O and F, yields a class of perovskite-based

TM oxyflouride (TMOFs) compositions as potential NIB cathodes (or anodes).

So far, perovskite TMOFs are a largely unexplored class of battery cathodes (or anodes), primarily due to

synthesis difficulties from highly stable fluoride precursors. [26] Indeed, only a few TMOFs, including, TiOF2

(space group: Pm3m), [27] VO2F (R3c), [28, 29] and NbO2F (Pm3m), [27] have been investigated as LIB

cathodes. Additionally, Li2MO2F with M across the 3d series [30] and Na2MnO2F [31] have been reported to

exhibit a disordered rocksalt, and not a perovskite-based structure. Also, most of the oxyfluoride structures

that have been reported have undergone either amorphization or an irreversible structural transition during

electrochemical cycling. [32–35] Although Li-ion mobility is not hindered in both disordered rocksalt, [36] and

amorphized, [37] oxyfluorides, studies have not analysed Na-ion mobility in similar frameworks. Notably, the

rutile-FeOF (P42/mnm) structure was tested as a NIB cathode and showed a reversible transition to cubic-

NaxFeOF. [35] However, this FeOF↔NaxFeOF transition was accompanied by significant hysteresis in the

corresponding voltage-capacity profiles, with possible contributions from electrolyte decomposition and/or

other side reactions. [35] Importantly, the chemical class TMOFs has not been systematically explored, either

computationally or experimentally, as NIB cathodes, so far.

Here, we present a systematic density functional theory (DFT)-based computational exploration of

perovskite-based TMOF compositions as potential NIB cathodes (or anodes). Specifically, we explore the

chemical compositions of oxygen-rich (NaMO2F↔Na2MO2F) and fluorine-rich (MOF2 ↔NaMOF2) per-

ovskites, where M = Ti, V, Cr, Mn, Fe, Co, or Ni. For both O-rich and F-rich compositions, we examine

possible crystalline structures of the general perovskite framework. Importantly, we have evaluated the

ground state Na-vacancy configurations, average Na intercalation voltages, and the 0 K thermodynamic

stabilities in both O-rich and F-rich TMOFs, followed by an evaluation of the Na-ion mobility in a subset

of candidate compounds. Besides shedding light on the overall trends in voltages and stabilities, we also

identify a few promising compositions, namely, TiOF2-NaTiOF2, VOF2-NaVOF2, CrOF2 and NaMnOF2, as

candidate NIB electrodes which can be relevant for subsequent experimental validation, primarily in strained

configurations. We hope that our study opens up the novel oxyfluoride chemical space for battery cathode

applications and beyond.
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2 Methods and Workflow

2.1 Structure identification

To explore the TMOF chemical space, we used the charged O-rich (i.e., NaMO2F) and F-rich (MOF2)

compositions as the initial cases for structure generation for all TMs. Note that both the charged com-

positions correspond to the TM being in a +4 oxidation state, while the corresponding discharged compo-

sitions (Na2MO2F and NaMOF2) reflect the TM in a +3 oxidation state. To identify the relevant space

group/polymorph, we first searched the inorganic crystal structure database (ICSD [38]) for experimental

structures with the NaMO2F and MOF2 compositions, where we found only TiOF2 (ICSD collection code

160661; Pm3m), VO2F (ICSD collection code 142594; R3c) and LiVO2F (ICSD collection code 142596;

R3c). Thus, we used the TiOF2 structure from the ICSD as the starting configuration for all calcula-

tions involving cubic-TiOF2, VO2F for calculations of rhombohedral-MOF2, and LiVO2F for calculations of

rhombohedral-NaMO2F.

Given the absence of ICSD structures for other TMOFs, we theoretically generated possible structures

for both charged compositions, using the workflow displayed in Figure 1. Similar to the procedure used

in a previous study [18], we used experimental template structures among six different space groups that

are commonly adopted by perovskite compositions to generate six possible theoretical structures for each

composition. Specifically, we used CaTiO3, BaTiO3, NaNbO2F, BaRhO3, LiVO2F, and CeVO3 as templates

for the Pm3m, P4mm, Pbnm, P63/mmc, R3c, and P2/b space groups, respectively. We chose Ba and Ca

containing structures as templates due to the similarity in ionic radii of Ba2+ and Ca2+ to Na+. CeVO3

was the only reasonable monoclinically-distorted perovskite template we could find. For rhombohedral

perovskites, the presence of VO2F and LiVO2F experimental structures provided us both an oxyfluoride

template along with possible Na sites, as Li can be substituted with Na, [39] motivating our use of LiVO2F

as the template. [28] As far the orthorhombic perovskite, NaNbO2F is an oxyfluoride and contains Na,

and hence was the obvious choice as a template. Note that we used the TiOF2 structure as the Pm3m

template for other MOF2 compositions, while we used the CaTiO3 structure as the Pm3m template for

NaMO2F compositions. In addition, we used VO2F structure as the R3c template for all rhombohedral-

MOF2 compositions and LiVO2F structure as the R3c template for all rhombohedral-NaMO2F compositions.

From each template structure, we performed chemical substitution (i.e., replace Ca/Ba/Li/Ce with Na,

and the remaining cation with a 3d TM), to result in a NaMO3 composition. Subsequenty, we used the

RLSVolumePredictor [40] class of the pymatgen package to scale the lattice parameters of the template

structure to values that better represent a NaMO3 perovskite composition. Upon lattice scaling, we intro-

duced F, based on a O:F ratio of 2:1 in O-rich perovskites, and 1:2 in F-rich perovskites, by inducing disorder

within the anionic sublattice using the SubstitutionTransformation class of pymatgen. Note that in F-rich

perovskites, we removed the Na before the lattice scaling step. Finally, we enumerated symmetrically dis-

tinct O-F arrangements for all distinct template space groups in both the NaMO2F and MOF2 compositions,

using the OrderDisorderedStructureTransformation class of pymatgen, and performed DFT calculations to

determine the respective ground state configurations. During enumerations, we took a maximum of 16 struc-

tures that exhibited the lowest electrostatic energy, calculated using the Ewald summation technique, [41]

to minimize computational expense. In the case of P4mm and R3c perovskites (both MOF2 and NaMOF2),

we obtained a total of only five and three symmetrically distinct configurations upon enumeration and all

configurations were considered for DFT calculations. In the case of Pm3m, Pbnm, P63/mmc, and P2/b

space groups, we obtained a total of 22, 40, 55, and 48 symmetrically distinct configurations, respectively,
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In absence of ICSD structure

Do DFT on select orderings to identify
MOF2 and NaMO2F groundstate polymorph 

Sodiate MOF2 and NaMO2F to get 
NaMOF2 and Na2MO2F; do DFT

Identify groundstate polymorph
for perovskite MOF2 and NaMO2F

Predict MOF2 and NaMO2F volume
by scaling the lattice of template

pmg

class RLSVolumePredictor

VNaTiO = VCaTiO rCa + rTi + √3rO

rNa + rTi + √3rO

CaTiO3
Pm3m

NaTiO3
Pm3m

Template Desired

V= volume; r= atomic radius

class
SubstitutionTransformation

class
OrderDisorderedStructure-

Transformation

Obtain unique O:F orderings
(1:2 in MOF2 ; 2:1 in NaMO2F)

NaTiO3
Pm3m

Desired
Ordering

pmg

Search perovskite
MOF2 and NaMO2F in ICSD

E.g., TiOF2 available on ICSD
       

TiOF2
Pm3m

NaNbO2F BaRhO3 LiVO2F CeVO3CaTiO3 BaTiO3
Pm3m Pbnm P63/mmc R3c P2/bP4mm

Use ideal perovskite structures
from ICSD as template

3 3

3
3 3

Figure 1: Workflow to obtain ground state polymorph for desodiated F-rich MOF2 and O-rich NaMO2F
perovskites, where M = Ti, V, Cr, Mn, Fe, Co, or Ni. Notations ‘pmg’ and ‘ICSD’ refer to the pymatgen
package and the inorganic crystal structure database.
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Figure 2: (a) NaTiO2F with the initial Na atom (denoted by Na1) at the centre of the cube (i.e., fractional
coordinates of (0.5, 0.5, 0.5)). (b) Displacement of the Na1 atom to (0.25, 0.25, 0.25) and subsequent
occupation of the second Na atom (denoted by Na2) at (0.75, 0.75, 0.75). Blue polyhedra in both panels
denote TiO4F2 octahedra. O and F are represented by red and purple spheres, respectively. Body diagonals
within the cubic structures are indicated by the dotted black lines.

out of which we chose the 16 lowest electrostatic energy configurations for each space group (for both MOF2

and NaMOF2).

Once the ground state polymorph of each desodiated NaMO2F and MOF2 composition was determined,

we added Na to the DFT-relaxed charged ground state structures to obtain the corresponding discharged

(or sodiated) configurations, i.e., Na2MO2F and NaMOF2. For NaMOF2, we initialised the Na ions on

the sites occupied by the A-cation in the corresponding template perovskite structure. Given that the

NaMOF2 perovskite only has one distinct Na (or A cation) site, we created a second Na site by displacing

the existing Na ion to minimize electrostatic repulsion between the two Na ions, as displayed in Figure 2.

For example, in the case of Pm3m NaTiO2F, we displaced the existing Na from the centre of the cube (i.e.,

fractional coordinates of (0.5, 0.5, 0.5)) along the body diagonal to a new site of coordinates (0.25, 0.25,

0.25). Subsequently, we initialised the second Na atom at the coordinates of (0.75, 0.75, 0.75), to minimize

electrostatic repulsions between the two Na. The introduction of additional Na sites in other perovskite

structures is described in the supporting information (SI), along with a schematic in Figure S1.

2.2 Computational details

We used the Vienna ab initio simulation package (VASP [42,43]) for all spin-polarized DFT calculations.

We utilised the projector augmented-wave (PAW [44,45]) potentials similar to our previous work, [46–48] with

the list of PAW potentials used in this work compiled inTable S1. To account for the electronic exchange and

correlation, we employed the Hubbard U corrected [49, 50] strongly constrained and appropriately normed

(i.e., SCAN+U) [46,47,51] functional. We utilised U values that were obtained for TMOs in our work [46,47],

since they gave the best agreement between calculated and experimental average voltages in Li-based TMOFs
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(see Table S2). We expanded the one-electron wavefunctions using a plane wave basis set, with a 520 eV

kinetic energy cutoff, and used a Gaussian smearing of width 0.05 eV to integrate the Fermi surface. We

sampled the irreducible Brillouin zone with a Γ-centered Monkhorst-pack [52] k-mesh with a density of at

least 32 k-points per Å−1 (i.e., a minimum sampling of 32 subdivisions along each reciprocal lattice vector).

For the total energies and atomic forces, we set the convergence criterion to be 0.01 meV and |0.03| eV/Å−1,

respectively. To reduce computational complexity, we initialised all 3d TMs in their corresponding high-spin

ferromagnetic configurations. For all structures, we relaxed the cell volume, cell shape, and ionic positions

without preserving any symmetry. Where possible, we have followed a colour-blind friendly colour scheme

in our plots. [53]

2.3 Ab initio thermodynamics

For evaluating the thermodynamic stability of the TMOFs considered, we constructed the 0 K convex hull

of the corresponding quaternary (i.e., Na-TM-O-F) chemical spaces using the pymatgen package. Specifically,

we collected experimentally-reported structures of individual elements (Na, TM, O, and F), binaries (Na-O,

Na-F, TM-O, and TM-F), ternaries (Na-O-F, TM-O-F, Na-TM-O, Na-TM-F), and quaternaries (Na-TM-O-

F) from the ICSD, and subsequently calculated their total energies using DFT. Note that we only considered

ICSD structures that were fully ordered, i.e., each lattice site in a structure exhibits an integer occupation of

a given species. Also, for individual elements, Na-O and Na-F binaries, and Na-O-F ternaries we used only

the SCAN functional for treating the electronic exchange and correlation, while for the other structures we

used the SCAN+U functional. Since we have utilised only DFT-calculated total energies to construct the

0 K convex hull, our phase diagrams do not include the p− V contributions.

Importantly, any stable entity on the 0 K convex hull will have a energy above convex hull (Ehull) as

0 meV/atom, while any metastable/unstable entity will have Ehull >0. [54] Given that compounds that

are metastable at 0 K can be stabilised under different experimental conditions, we used a synthesizeability

threshold of Ehull ≤100 meV/atom. [55] This implies that compounds with a Ehull ≤100 meV/atom may be

synthesizeable under higher temperatures/pressures, and can be considered metastable, while compounds

with Ehull >100 meV/atom are unlikely to be synthesizeable and can be considered to be unstable. All

calculated phase diagrams (except for the Na-Ti-O-F quaternary) are compiled in Figure S3, while the list

of stable/unstable compounds are compiled in Table S4.

The average voltage for Na (de)intercalation in TMOFs is evaluated using DFT-based total energies from

the well-known Nernst equation. [56] Considering a Na (de)intercalation reaction of the form, NaxTMOF +

∆xNa↔Nax+∆xTMOF, we can approximate the Gibbs energy change (∆G) associated with the (de)intercalation

process using Equation 1, which neglects entropic and p−V contributions. Note that the E terms in Equa-

tion 1 are DFT-calculated, with NaxTMOF and Nax+∆xTMOF described with SCAN+U and metallic Na

described with SCAN in its body-centered-cubic ground state. F is Faraday’s constant.

⟨V ⟩ = ∆G

∆x F
≈ −E(Nax+∆xTMOF)− [E(NaxTMOF) +∆x E(Na)]

∆x F
(1)

2.4 Kinetics

To estimate the ionic mobility of Na+ in select TMOF frameworks, we utilized DFT-based nudged elastic

band (NEB [57, 58]) calculations to estimate the migration barrier (Em) associated with Na+ motion. For

all structures, we considered a vacancy-mediated Na+ migration along the A-site ‘tunnel’ of the perovskite
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framework, and calculated Em either at the charged or the discharged sodium concentration limits. Upon

introducing a Na-vacancy and fully relaxing the endpoint configurations, we interpolated five images across

the endpoints to initialise the minimum energy path (MEP).

Spring forces of 5 eV/Å were introduced between the images, and we considered the NEB calculation

converged when the total energy of each image and the perpendicular component of the force between each

image dropped below 0.01 meV and |0.05| eV/Å, respectively. For all NEB calculations, we used supercells

with lattice parameters ≥8 Å to avoid spurious interactions of the migrating Na with its periodic images. We

used the Perdew-Burke-Ernzerhof (PBE [59]) parameterization of the generalized gradient approximation

(GGA) to describe the exchange-correlation in our NEB calculations instead of SCAN, since GGA provides

accurate qualitative trends at lower computational cost and with fewer convergence difficulties. [60] All

computed MEPs are compiled in Figure S4.

3 Results

3.1 Ground state polymorphs and average voltages

The ground state polymorph for each desodiated F-rich MOF2 and O-rich NaMO2F are represented by

the black arrows in panels a and b of Figure 3. The percentage normalised differences in energies of the

other polymorphs considered, relative to the ground state, are plotted as bars in Figure 3. Specifically, we

have plotted the percentage differences, calculated as E(polymorph)−E(groundstate)
E(highest−energy−polymorph)−E(groundstate) × 100, where

each concentric ring on the radars represent percentage steps of 20%. Thus, the ground state and the highest

energy polymorph represent 0% and 100%, respectively, on the radars of Figure 3 for each composition.

Notably, the ground state polymorphs of the MOF2 compositions include Pbnm (for Ti, V, Fe), R3c (Cr,

Mn, Ni), and P2/b (Co), while for the NaMO2F compositions are P2/b (Ti, V, Mn, Fe, Co), Pbnm (Cr),

and R3c (Ni). We have compiled the percentage normalised relative energies for all perovskite polymorphs

considered in Table S3 and provided schematics of the desodiated ground states and their corresponding

sodiated structures in Figure S2.

Figure 4 depicts the calculated average voltages for Na (de)intercalation, versus Na/Na+, into the

ground state polymorphs of F-rich MOF2 (orange bars) and O-rich NaMO2F (blue bars). The extent of

Na (de)intercalation considered in both F-rich and O-rich perovkistes are one Na per f.u., corresponding

to MOF2 ↔ NaMOF2 and NaMO2F↔ Na2MO2F, respectively. Expectedly, we find the F-rich perovskites

to exhibit consistently higher average voltages than the corresponding O-rich perovskites, which can be

attributed to the greater inductive effect of F− compared to O2−. [20] Indeed, fluorine’s inductive effect

causes an increase in average voltage of ≥2 V for all TM (except Mn at a 1.98 V increase), with the increase

in Ni being the highest at 3.08 V.

In both the F-rich and O-rich perovskites, there is a monotonic increase in voltages along the 3d series,

with the values increasing from 2.21 V (in Ti) to 4.78 V (Ni) in F-rich, and −0.13 V (Ti) to 2.68 V

(Co) in O-rich. The monotonic trends in voltages can be largely attributed to the corresponding trends in

standard reduction potentials of the TMs. [61] The dip in voltage from Co to Ni in O-rich perovskites can

be primarily attributed to cooperative Jahn-Teller distortion in the Ni-perovskite, which results in a larger

deviations in lattice parameters (see compiled b/a and c/a ratios in Mn- and Ni-perovskites in Table S5).

Interestingly, the average intercalation voltage in the O-rich Ti-perovskite exhibits a negative value (−0.13 V),

indicating non-spontaneity of Na-intercalation in this system. This is because the intercalated Na2TiO2F is

7



Pm3m
P4mm
Pbnm
P63/mmc
R3c
P2/b

Ti

V

Cr
Mn
Fe

Co
Ni Ti

V

Cr
Mn
Fe

Co
Ni

(b)(a)

Figure 3: Percentage normalised relative energies of all polymorphs considered with respect to the corre-
sponding ground states for (a) F-rich MOF2 and (b) O-rich NaMO2F. All ground state polymorphs are
indicated by black arrows. Each concentric ring on the radars represent a percentage step of 20%.

thermodynamically unstable, with Na-metal being one of the decomposition products (see Figure 5).

Given the electrolyte stability windows of liquid electrolytes in NIBs typically span up to 4.8 V vs.

Na/Na+, [62, 63] we find all perovskites considered in this work to be suitable as NIB electrodes. The low

average voltages of several O-rich perovskites, including V, Cr, Mn, and Fe (<2.5 V), and TiOF2, make these

systems more suitable as negative electrodes (anodes) than cathodes in a NIB. Thus, based on the voltage

data alone, we find the Mn-, Fe-, Co-, and Ni-based F-rich perovskites to be the most promising as NIB

cathodes. However, practical deployment of candidate electrode materials in NIBs will be highly dependent

on their synthesizability (i.e., thermodynamic stability) and their rate performance (i.e., Na-ion mobility).

3.2 Thermodynamic stability

Upon construction of the quaternary 0 K Na-TM-O-F convex hulls, we plotted pseudo-ternary slices

(or projections) of the quaternary phase diagram for each TM for ease of visualization. For instance,

ternary projections of the Na-Ti-O-F system is displayed in Figure 5, while the ternary projections for

the remaining TM systems are compiled in Figure S3. The background colors in all panels (shades of

green) of Figure 5 indicate the energy of formation (Eformation), calculated with respect to the terminating

compositions of the ternary projections. Stable compounds within the ternary projections are indicated by

black circles. Metastable/unstable compounds are indicated by red diamonds. For each metastable/unstable

compound among the TMOFs considered, the set of decomposition products (i.e., stable compounds that a

metastable/unstable compound is thermodynamically driven to decomposes into) is compiled in Table S6.

For visualising the TiOF2 composition in the Ti-quaternary, we used a ternary projection terminated by

TiO2, TiF3, and O2 (see Figure 5a). Similarly, for visualizing the NaTiOF2, we used the NaTiF4-NaF-

Ti2O3 ternary projection (Figure 5b). Both NaTiO2F and Na2TiO2F can be captured within the TiO2-

NaF-Na projection Figure 5c. Importantly, Figure 5 indicates that TiOF2 is thermodynamically stable

(Ehull =0 meV/atom), NaTiOF2, and NaTiO2F are metastable with Ehull of 46, and 53 meV/atom, respec-

tively, which are below the 100 meV/atom threshold, and Na2TiO2F is unstable with Ehull of 187 meV/atom.
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Ti V Cr Mn Fe Co Ni
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Figure 6: Calculated Ehull) for charged and discharged F-rich TMOFs (bottom two rows) and O-rich TMOFs
(top two rows). Each column represents a 3d TM, while the Ehull for each compound is indicated using text
annotations within each square. The green line on the legend bar indicates the 100 meV/atom synthesizability
threshold considered in this work.

Notably, Na-metal is one of the decomposition products for the unstable Na2TiO2F (Figure 5c), which ex-

plains the calculated negative intercalation voltage for the NaTiO2F ↔ Na2TiO2F reaction (Figure 4).

The heatmap depicted of Figure 6 compiles the Ehull data of all charged and discharged O-rich and F-

rich perovskites considered. Blue squares indicate stable/metastable compounds, while red squares indicate

unstable compounds. The text annotations within each square represents the Ehull in meV/atom for the

corresponding compound. Significantly, we find only TiOF2 and VOF2 to be thermodynamically stable (i.e.,

Ehull =0 meV/atom) among all the TMOFs considered. This is in agreement with experimental reports

that have synthesized TiOF2 [27] and VOF2. [64] All charged and discharged compositions of Fe-, Co-,

and Ni-based TMOFs are unstable, with Ehull greater than the synthesizability threshold of 100 meV/atom,

citing the high unsuitability of such compositions as NIB electrodes. Moreover, all O-rich perovskites, except

NaTiO2F, exhibit E
hull >100 meV/atom, highlighting their high instabilities.

While it is good for an electrode to have thermodynamically stable charged and discharged states to

avoid any irreversible decomposition or conversion reactions during an electrochemical cycle, topotactic

(de)intercalation is often possible with metastable charged and discharged states as well. [65–68] Thus, com-

positions that lie within the Ehull threshold of 100 meV/atom can be considered as possible electrodes. Thus,

possible structures that can be considered as NIB electrodes, given thermodynamic stability constraints, in-

clude TiOF2-NaTiOF2, VOF2-NaVOF2, CrOF2, and NaMnOF2, and the ease of Na-ion mobility within

these frameworks will further determine their suitability. Note that the high instabilities of NaCrOF2 and

MnOF2 may limit the Na insertion/extraction capacity in these electrodes, compared to TiOF2-NaTiOF2,

and VOF2-NaVOF2. Although we find NaTiO2F to be metastable, we did not calculate Na Em within this

structure given the negative average intercalation voltage associated with Na2TiO2F formation.

3.3 Ionic mobility

For the candidate compositions identified via our voltage and stability calculations, we estimated the

Na Em via the vacancy-mediated mechanism, and compiled the values in Figure 7. Barriers calculated
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Figure 7: GGA-calculated Em of pristine (solid orange bars) and strained (solid grey or hashed bars)
candidate compositions. The horizontal dotted line indicates the threshold Em of 1000 meV.

in regular TMOF compositions are represented by solid orange bars in Figure 7, while barriers calculated

in strained compositions (vide infra) are indicated by solid grey or hatched bars. We used a threshold

value of 1000 meV for the Em, indicated by the dotted black line in Figure 7, to represent an electrode

material that can be used in reasonable electrochemical conditions, similar to our previous works. [67, 69]

Thus, electrodes that exhibit Em ≤1000 meV are considered candidates for further experimental exploration.

Notably, all shortlisted TMOF compositions exhibit barriers that are above the 1000 meV threshold in their

pristine state. Only NaTiOF2, with a barrier of 1121 meV, is close to the 1000 meV threshold, with other

compositions exhibiting significantly higher Em, including NaVOF2 (1486 meV), NaMnOF2 (1619 meV),

TiOF2 (1709 meV), VOF2 (2384 meV), and CrOF2 (2570 meV).

Introducing strain in an electrode can often lead to lowering of Em and consequent increasing in ionic

mobility. [70–72] Thus, to examine whether the identified TMOFs can reasonably function as NIB electrodes

under strain, we introduced a homogeneous tensile strain of 5% across all lattice parameters of TiOF2

and evaluated the Na-Em using GGA-based NEB. To ensure that the tensile strain is maintained during

structural relaxation, we restricted the relaxation of the end points to only include changes in ionic positions.

Importantly, the strain introduction significantly reduced the Em to 636 meV (i.e., by 62.8%) compared to

the pristine-TiOF2, as shown by the solid gray bar in Figure 7.

Assuming similar reductions in calculated Em with strain addition in other TMOFs (i.e., by 62.8% com-

pared to the pristine-case), we estimate the barriers in strained NaTiOF2, VOF2, NaVOF2, CrOF2, and

NaMnOF2 to be 417 meV, 888 meV, 553 meV, 957 meV, and 607 meV, respectively (see hashed bars in Fig-

ure 7). Thus, all TMOFs identified using our voltage and stability criteria may exhibit reasonable Na-ionic

mobility, provided a homogeneous strain is introduced within the materials. In practice, lattice expansion

can be achieved through doping, [73,74] heat/mechanical treatment, [75,76] and/or epitaxially, such as in the

case of thin film electrodes. [71, 77] Note that introducing strain and maintaining it during electrochemical

cycling may come at the cost of energy density of the eventual battery. Thus, we expect TiOF2-NaTiOF2,

VOF2-NaVOF2, CrOF2, and NaMnOF2 to be NIB electrodes worth exploring experimentally, especially for

strained electrode configurations and thin film batteries.
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4 Discussion

In this work, we performed first principles calculations to explore the scope of 3d TM-based F- and

O-rich perovskite oxyfluorides (NaxMOF2 and Na1+xMO2F, x= 0-1) as NIB electrodes. Using a structural

template based workflow, we identified the ground state polymorphs of the charged MOF2 and NaMO2F

compositions (M = Ti, V, Cr, Mn, Fe, Co, or Ni) among six possible space groups commonly adopted by

perovskites. Subsequently, we introduced Na to create corresponding discharged perovskite compositions,

namely NaMOF2 and Na2MO2F, and evaluted the average Na (de)intercalation voltages, 0 K thermodynamic

stabilities in all perovskites, and Na-ion mobility in a select set of candidate perovskites. Based on our voltage,

stability, and mobility calculations, we identify six perovskite compositions, namely TiOF2-NaTiOF2, VOF2-

NaVOF2, CrOF2, and NaMnOF2 to hold some promise as NIB electrodes, if used in strained configurations

and/or in thin film batteries.

During the process of enumerating possible structures for the charged perovskites, we only considered a

maximum of 16 lowest electrostatic energy configurations within each space group, and identified the ground

state configuration among these structures as the one with the lowest DFT total energy (per f.u.). Note that

the choice of the 16 lowest electrostatic energy structures (per space group) is an approximation and there is

always a non-zero chance of encountering the ‘true’ ground state beyond this choice. Using our criteria of a

maximum of 16 structures per space group contributes to a total of 72 structures per perovskite composition

(i.e., 16×4 + 5+ 3), which in turn adds up to 1008 structures over all TMs considered and over both O-rich

and F-rich compositions, which by itself represents a significant computational expense. Nevertheless, even

if the ‘true’ ground state is beyond the set of configurations we have considered here, we expect it to exhibit

a lower energy, of the order of ∼10 meV/f.u., compared to the ground state that we have identified, which

will only cause a marginal change to the voltage (∼10 mV) and stability (Ehull±10 meV/f.u.) predictions.

Another approximation in our structure generation workflow is the identification of ground state con-

figurations at the charged perovskite compositions followed by addition of Na to the lowest-energy charged

structure to obtain the discharged structure. We could have followed a similar procedure of ground state iden-

tification using the discharged composition instead of the charged composition. Our choice of the charged

perovskite composition for ground state identification was motivated largely by experimental reports on

TMOFs in LIBs, wherein, Li was typically inserted into charged TMOF compositions. [27, 28] Thus, the

TMOF composition was synthesized first followed by Li discharge to obtain the discharged state. Consider-

ing the ground state configuration at the discharged state may lead to qualitatively different results, in terms

of average voltages, 0 K stability, and Na-ionic mobility. But considering a workflow along the discharged

compositions represents a significant computational effort, which we plan to take up as future work.

For all SCAN+U calculations, we used the U value derived from TM oxides since the oxide-based U

better reproduced the experimentally determined voltages for Li-intercalation in TMOFs, such as VO2F ↔
LiVO2F and TiOF2 ↔ Li0.5TiOF2. [27,28] Hence, we did not tailor our U values specifically for oxyfluorides.

More experimental data will be needed to verify if such tailored U values will yield more accurate predictions.

Additionally, we initialised all our TMs in their corresponding ferromagnetic high-spin configurations, and

did not consider possible magnetic/spin orderings due to their computational complexity, which may have

marginally affected the set of ground states that we obtained. Also, SCAN+U is known to overestimate

intercalation voltages and meta/instability of compounds, [78] which is also a reason for us to consider a

fairly large threshold (Ehull ≤ 100 meV/atom) for synthesizability.

We used a reasonably high threshold for ionic mobility (Em ≤1000 meV [67]) to identify candidates partly

due to the limited literature on Na-ion mobility within crystalline ordered oxyfluorides. Moreover, addition
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of F− to oxides can result in a reduction of Na+ mobility due to more ionic Na-F bonds than Na-O, similar to

observations of reduction in Li-mobility in F-doped oxide-based disordered rocksalts. [79,80] Importantly, our

calculations indicated that only NaTiOF2 (Em =1121 meV) came close to the threshold used, with all other

oxyfluorides considered exhibiting significantly high Em Na-motion. However, introducing a homogenous

strain (∼5%) within the lattice can significantly reduce the Em (by ∼60%), as demonstrated for the case

of TiOF2. Thus, TMOFs can exhibit reasonable rate performance under lattice strain. However, the need

to maintain the strained structure may limit the applicability of TMOFs to low power and/or thin film

batteries that are typically used in internet-of-things applications and wearable electronics.

Considering the oxyfluoride compositions of NaxMOF2 and Na1+xMO2F was primarily motivated by the

availability of the M4+/3+ redox couple, which is exhibited by several 3d TMs, quite reversibly. Our work can

be extended to other fluorine-added compositions, such as F-substituted oxides, phosphates, sulphates, and

pyrophosphates. Indeed, high voltages and capacities with Na (de)intercalation have already been reported

in fluorophosphates. [81–83] Therefore, we are hopeful that our research lays the foundation for exploring

other promising compositions for NIB electrodes within and beyond the chemical space of oxyfluorides.

5 Conclusion

NIBs, which represent an alternative technological pathway to the state-of-the-art LIBs in energy storage

technology, require novel materials to improve the energy and power densities so that NIBs compete better

with LIBs. Here, we explored the chemical space of perovskite-based TMOFs, considering both O-rich

and F-rich compositions, as possible Na-ion intercalation hosts. Specifically, we performed DFT-based

calculations on NaxMOF2 and Na1+xMO2F (x = 0-1), where M = Ti, V, Cr, Mn, Fe, Co, or Ni, evaluating

the ground state polymorphs, average Na (de)intercalation voltages, 0 K stabilities, and Na+ mobilities.

We found that F-rich perovskites exhibit higher voltages than O-rich compositions, due to the stronger

inductive effect of F−. In terms of stability, only TiOF2 and VOF2 were stable while other compositions,

including NaTiOF2, NaVOF2, CrOF2 and NaMnOF2 were metastable (Ehull ≤ 100 meV/atom). However,

all stable and metastable TMOFs exhibited high Em (≥1000 meV) for Na+ motion in their pristine states.

Nevertheless, introducing a 5% homogenous tensile strain causes the Em to drop by ∼60% compared to

the pristine state, suggesting that the TMOFs may have applications in thin film batteries and in strained

electrode configurations. Our study represents a systematic computational exploration of the oxyfluoride

chemical space, which we hope will reinvigorate research in these chemistries for NIBs and beyond.
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