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Abstract

We present a construction of new invariant sets for fibred polynomial dynamics with
base an irrational rotation over the unit circle, called multi-curves. Furthermore, the
local dynamical theory for attracting invariant curves is extended to these objects.

1 Introduction

In a given dynamical system, it is possible to find several types of invariant objects, such
as fixed and periodic points, a minimal complex attractor, and the support of an invariant
measure, among others. Through these objects, we can understand many features of the
system.

In classic one-dimensional complex dynamics, the Julia set concentrates the most signif-
icant (chaotic) part of the dynamics. Nevertheless, we can focus on a simpler invariant set,
namely the repelling periodic orbits, since it is a classical result from Fatou and Julia that
those objects are dense in the Julia set.

A continuous map P : T1 × C → T1 × C is called a fibred polynomial dynamics with
base an α-irrational rotation if P (θ, z) = (Rα(θ), pθ(z)), where Rα is an irrational rotation
of T1, and pθ is a polynomial for each θ, whose coefficients depend continuously on θ.

Given that the irrational rotations of the circle are minimal, it follows that these fibred
polynomials do not contain either fixed or periodic points. It raises the natural question of
the existence of minimal invariant objects, distinct from the Julia set for fibred polynomial
dynamics. Given the nature of the base space of fibred polynomial dynamics, it is logical to
expect that a minimal invariant object possesses the same topological structure of the base
space, namely a closed curve.

In his doctoral thesis [Po1], M. Ponce proved that a natural extension for fixed and
periodic points is invariant curves, see Definition 1 below.

Remark 1. It is important to note that, unlike the classic complex case, the existence of
invariant curves for fibred dynamics is a cohomological problem rather than an algebraic
problem.

The example presented in [Po4] has demonstrated that despite the similarities, there
exist significant differences between fibred and classic polynomial dynamics. The aim of
this work is to demonstrate another difference in this context by proving the existence of
attracting invariant objects that are not simple invariant curves, but have the topological
structure of a curve. This new object will be called a multi-curve.
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This work is organized as follows: In Section 2 we recover the definition of the invariant
curve and its main linearization results. In Section 3, we define our objects of study and
extend the results of the previous section. In Section 4 we construct a mechanism to obtain
2-invariant attractor curves for quadratic fibered polynomials. Finally, in Section 5, we use
the techniques from the previous section to obtain a 3-curve invariant for a bundled rational
dynamics.

2 Invariant curves

In this section, we describe the concept and basic properties of the primer invariant ob-
jects that can be found in fibred polynomial dynamics (fpd) with base an irrational rotation.
We refer to [DP, Po2, Se1] for fundamentals on fibred dynamics.

Definition 1. Let P : T1 × C → T1 × C be a fpd with base an irrational rotation Rα. We
say that a simple closed continuous curve γ : T1 → C is an invariant curve for P if γ
holds the following condition

pθ(γ(θ)) = γ(θ + α), (1)

for every θ ∈ T1.

Similar to the classic multiplier of complex fixed points, there is a fibred version of this
number that locally characterize the dynamics of an invariant curve.

Definition 2. Let u : T1 → C be an invariant curve for a fibred polynomial P (θ, z) =
(Rα(θ), pθ(z)) over an irrational rotation. Provided that the function θ → log |p′θ(u(θ))| is
a L1(T1) function, we call the multiplier of the curve to the positive number

κ(u) = exp
(∫

T1

log |p′θ(u(θ))|dθ
)
.

When the multiplier κ(u) < 1 we say that the curve is attracting. If κ(u) > 1 we call
it repulsor, and in the case κ(u) = 1 the curve is called indifferent.

When the invariant curve is also a critical curve, i.e. p′θ(u(θ)) = 0 for every θ ∈ T1, it
is possible to extend the definition by making κ(u) = 0, note that this is the case for the
constant curve z ≡ ∞. We call such an invariant curve super-attracting. The integrability
condition of the invariant curve allows non-empty intersections between the invariant curves
and the critical set, only on finite sets.

In holomorphic dynamics, the multiplier provides us with information about the local
dynamics around the respective cycle. For instance, in the attracting case, we can find a
neighborhood of the cycle that is “attracted” to it. This local dynamical theory has been
extended to the fibred case for invariant curves, see [DP, Po2] for further references. In
particular, in [Po2] the author considers local linearization under the extra condition that
the fibred polynomial to be injective on the invariant curve, whereas a recent result in [DP]
performs an analogous linearization when log |p′θ(u(θ))| is just a L1(T1) function, allowing
(finitely many) critical points on the invariant curve. Moreover, the concept of basin of
attraction for an attracting invariant curve is defined and proved to be an open subset of
the fibred space. In the next section, we extend these results for multi-curves.
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3 Multi-curves

The aim of this section is to describe multi-curves as dynamical objects, and to extend
the local theory of invariant curves to them.

Let γ̃ : T1 → C be a simple closed curve. For each n ∈ N, γ̃ induce a simple closed curve
in the fibred space T1 × C given by

γ : T1 → T1 × C
θ 7→ (⟨nθ⟩, γ̃(θ)),

where ⟨·⟩ denotes the fractional part. In other words, the image Γ = γ(T1) is a closed curve
in T1 × C without self-intersections, turning n-times in the direction of the base space T1.

Definition 3. We say that a subset Γ ⊂ T1 × C is a n-curve if it is the image of a curve
γ induced by some γ̃ : T1 → C as described above. In general, a subset Γ ⊂ T1 ×C is called
a (p, n)-curve or multi-curve if Γ consists of p components, each of which is a n-curve.

If we extend γ̃ to T1×C, we may think of γ̃ as a lifting of the n-curve γ under the n-fold
covering Πn : T1 × C → T1 × C given by (θ, z) 7→ (⟨nθ⟩, z).

Note that if Γ ⊂ T1 ×C is a n-curve, then the fiber over θ contains exactly n-points for
each θ ∈ T1, i.e. |Γθ| = n ∀θ. Hence, if we set a base point (0, g0) ∈ Γ, then there exists a
unique γ̃ with γ̃(0) = g0, in other words, there are n lifts γ̃ for every n-curve.

Also, it is not difficult to notice that a n-curve γ consists of a concatenated list of curves
γ1, ..., γn : [0, 1] → T1 × C satisfying γi(1) = γi+1(0), with γn+1 = γ1. Once we set a base
point (θ0, g0) = (0, γ̃(0)) in Γ, each curve may be defined as

γi(θ) = γ

(
i− 1 + θ

n

)
, i = 1, 2, ..., n. (2)

In this sense, we denote a n-curve Γ with base point (0, γ̃(0)) as Γ = (γ1 γ2 ... γn).

Figure 1: Displaying a 4-curve in T1 × C

Definition 4. Let Γ = (γ1 γ1 ... γn) be a n-curve induced by an injective continuous function
γ̃ : T1 → C, the extended image of γ̃ in the fibred space T1 × C, as given by

γ̃(θ) = (θ, γ̃(θ)), (3)
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Figure 2: “Unfolding” process for the 4-curve

is called the unfolding curve of γ.

Remark 2. Note that the unfolding γ̃ as above defined is actually the unique lift of the
n-curve γ : T1 → T1 × C with base point (0, γ̃(0)).

3.1 Invariant multi-curves

Consider now a fibred holomorphic dynamics F : T1 × C → T1 × C and let Γ =
(γ1 γ2 ... γn) be a n-curve in T1×C such that F

∣∣
Γ
is a homeomorphism, i.e. Γ = (γ1 γ2 ... γn)

is invariant under F as a subset. For each θ ∈ T1, the fiber of Γ over θ consists of n
distinct points, and then Equation (1) makes no sense as an invariant notion. Although
Γ = (γ1 γ2 ... γn) is invariant under F as a subset of T1 × C, the orbit of Γ may be
‘dynamically jumping’ along the concatenated list of curves (γ1 γ2 ... γn).

Consider the n-fold covering of T1 × C given by

Πn : T1 × C → T1 × C
(θ, z) 7→ (⟨nθ⟩, z),

then, every lifting of F under Πn is given by

F̃τ : T1 × C → T1 × C

(θ, z) 7→
(
θ +

α+ τ

n
, f⟨nθ⟩(z)

)
,

for some τ ∈ {0, 1, ..., n− 1}. We recall that T (θ) = θ+ τ/n is a deck transformation for
Πn. We obtain the following commutative diagram.

T1 × C

Πn

��

F̃ // T1 × C

Πn

��
T1 × C

F
// T1 × C.

(4)
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Figure 3: 4 unfoldings for a 4-curve

Definition 5. Suppose Γ = (γ1 γ2 ... γn) is a n-curve (or multi-curve) induced by a curve
γ̃ : T1 → C. We say that Γ is a dynamically invariant curve (or invariant multi-
curve) for the fibred dynamics F : T1 × C → T1 × C if the curve γ̃ : T1 → C is invariant
for some lifting F̃τ : T1 × C → T1 × C as defined in (1).

The above commutative diagram makes this definition well-defined. More over, it is clear
that F̂τ

∣∣
Γ̂
is a homeomorphism if and only if F

∣∣
Γ
is a homeomorphism. Finally, combining

the invariance of γ̃ and the commutative diagram, it follows that τ determine how F
∣∣
Γ

dynamically jumps among the curves (γ0 γ1 ... γn−1), that is, for every θ ∈ T1 we have

fθ(γi(θ)) = γi+τ (θ + α). (5)

This way, τ is called the jumping integer for Γ = (γ1 γ2 ... γn).

3.2 Dynamically invariant multi-curves exist.

In this short subsection, we exhibit a couple of examples of multi-curves for fibred dynam-
ics. The examples are extreme opposite in the sense that the former is a trivial construction
of several multi-curves for a fibred dynamics in the unit circle (with rotation as base map),
while the further is a forced construction of a fibred polynomial dynamics based on a given
topological multi-curve.

Example 1. Let n ∈ N, α ∈ T1, and F : T1 × T1 → T1 × T1 be a fibred dynamics on the

unit circle over a rotation by α in the unit circle itself, F (x, y) = (x+ α, y +
α

n
). Then the

curve γ : [0, n] → T1 defined by

t 7→ γ(t) =
t

n
,

induce an invariant n-curve for F . In fact, the phase space T1 × T1 is foliated by invariant
copies of this invariant n-curve.
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Example 2. The Interpolation Lagrange polynomial is a very useful tool to construct
invariant multi-curves. Let Γ = (γ1 γ2 ... γn) be a n-curve, α ∈ R, and τ ∈ {0, 1, ..., n− 1}.
For every θ ∈ T1, let pθ be the n − 1 degree Lagrange interpolation polynomial taking the
points {γ1(θ), γ2(θ), ..., γn(θ)} to the points {γ1+τ (θ + α), γ2+τ (θ + α), ..., γn−1+τ (θ + α)}
sending point γi(θ) to the point γi+τ (θ + α), where i + τ is taken ( mod n). Then, the
fibred polynomial

P : T1 × C → T1 × C
(θ, z) 7→ (θ + α, pθ(z))

is continuous and leaves Γ (dynamically) invariant with jumping integer equal to τ . A similar
construction can be made to get a fibred higher degree polynomial dynamics ((n + p − 1)
degree) leaving invariant a prescribed (p, n)-curve.

3.3 Dynamical nature of multi-curves

One wonders if it is possible to determine a (locally) dynamical nature of an invariant
multi-curves as for simple invariant curves. This will be possible since the invariance of the
multi-curve is defined through a simple (unfolding) invariant curve.

The fibred multiplier can then be extended for invariant multi-curves in the following
way.

Definition 6. Suppose that Γ = (γ1 γ2 ... γn) is a (dynamically) invariant n-curve for the
fibred polynomial P (θ, z) = (θ + α, pθ(θ)), then the fibred multiplier of Γ is defined as

κf (Γ) := κ(γ̃) = exp

(∫
T1

log |∂z p̂θ(γ̃(θ))|dθ
)
, (6)

where P̂ (θ, z) =

(
θ +

τ + α

n
, p̂θ(z)

)
and γ̃ are the lifted fpd and its (unfolding) invariant

curve associated. Moreover, the multi-curve Γ is called attracting, repulsor or indifferent
if κ < 1, κ > 1 or κ = 1 respectively.

Remark 3. In Example 2, by increasing the degree of pθ, we can impose extra mild condi-
tions on the complex derivative ∂zP at points of the multi-curve Γ, so that Γ yields into an
attracting invariant n-curve.

Defining the multiplier of a multi-curve through its unfolding curve, allows us to extend
the local theory for multi-curves from Section 2. The following results are direct conse-
quences of the ones in [D, DP, Po2] through the commutative diagram (4).

Lemma 1 (The attracting case). Let P be a fibred polynomial dynamics over an irrational
rotation, and Γ be an attracting invariant multi-curve. Then there exists a continuous
change of coordinates H(θ, z) = (θ, a(θ)z + b(θ)) such that Γ is still an attracting invariant
multi-curve for the conjugated fibred polynomial dynamics Q = H−1 ◦ P ◦H. Moreover, if
Q(θ, z) = (θ + α, qθ(z)), then there exists c < 1 such that

sup
θ∈T1

|∂zqθ(γ(θ))| < c.

Lemma 2 (The repulsor case). Let P be a fibred polynomial dynamics over an irrational
rotation, and Γ be a repulsor invariant multi-curve. Then there exists a continuous change
of coordinates H(θ, z) = (θ, a(θ)z+b(θ)) such that Γ is still a repulsor invariant multi-curve

6



for the conjugated fibred polynomial dynamics Q = H−1 ◦ P ◦ H. Moreover, if Q(θ, z) =
(θ + α, qθ(z)), then there exists c > 1 such that

inf
θ∈T1

|∂zqθ(γ(θ))| > c.

Also, the basin of attraction is well-defined in the attracting case.

Lemma 3. Let P be a fibred polynomial dynamics over an irrational rotation, and let Γ be
an attracting invariant n-curve. Then there exists an open set T ⊂ T1 × C containing the
multi-curve Γ, and such that every point in T is attracted to Γ, i.e., zθ ∈ Tθ then

dist(Pn(θ, zθ),Γ) → 0, as n → ∞.

Moreover, for every θ ∈ T1, the fiber Tθ consists of n-components each of which contains a
point of Γθ.

The open set T defined in the above lemma, may be thought as a (neighborhood) multi-
tube around the multi-curve Γ. This allows us to formally define its basin of attraction.

Definition 7. Let P be a fibred polynomial dynamics over an irrational rotation, and let Γ
be an attracting invariant multi-curve. If O+(θ, z) defines the forward orbit under P of a
point (θ, z), then

A(Γ) = {(θ, z) : dist(O+(θ, z),Γ) → 0, n → ∞}

is called the basin of attraction of the multi-curve γ.

Analogous to the simply invariant case, we have that

A(Γ) =
⋃
n≥0

P−n(T ),

where T is the invariant multi-tube defined in Lemma 3.

Corollary 1. If Γ is an attracting invariant multi-curve, then its basin of attraction A(Γ),
is an open subset of T1 × C.

4 Invariant 2-curves for small perturbation of a static
quadratic dynamics

In this section multi-curves are exhibited in the lowest grade for polynomials where
interesting dynamics appear: the quadratic case (recall trivial Example 1 is of degree one).

4.1 Fibred quadratic polynomials

Consider the family Fα of canonical fibred quadratic polynomials

Pα
C : T1 × C → T1 × C

(θ, z) 7→ (θ + α, z2 + C(θ)), (7)

where α ∈ T1 is the irrational rotation angle and C : T1 → C is a continuous function that
may be thought as a parameter. A wider family of quadratic polynomial dynamics has been
widely studied by Sester in [Se1], here the author defines the corresponding principal cardioid
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of the fibred Mandelbrot set. We will be only focusing on those quadratic polynomials with
a good normalization, as given in 7.

The idea in the construction will be to find invariant n-curves by choosing a parameter
C : T1 → C that wanders through some special places around the classical Mandelbrot set.

Analogous to the classic one-dimensional complex case, under a mild condition on the
quadratic coefficient, every quadratic polynomial can be normalized to the form in (7)
under a suitable fibred change of coordinates, see Proposition 2.1 and 2.2 in [Se1] for further
reference on this.

4.1.1 The ‘static’ fibred polynomial

Let P (θ, z) = (Rα(θ), pθ(z)) be a fibred polynomial dynamics, where pθ(z) is a degree d
polynomial and α = 0, in other words, P (θ, z) may be viewed as a continuous parametrized
family of polynomial dynamics. We refer to this case as the static fibred polynomial case.

Suppose that Z ⊂ T1 × C is a connected component of the continuous solution to the
fixed-points equation:

pθ(z(θ)) = z(θ).

Since α = 0, it follows that P
∣∣
Z is a homeomorphism. Suppose also that Z is a n-curve,

then it is easy to see that Z is an invariant multi-curve according to Definition 5.
The strategy of this chapter is to construct invariant multi-curves through the curves

generated by the set of fixed points of the static fibred polynomial. We will consider suitable
parametric curves (small circle with the classical parabolic parameter c0 = 1/4 in its inte-
rior). Then, after a post-composition with a Lagrange Interpolation Polynomial, adding the
fibred nature with the irrational rotation as described in Example 2, we will maintain the
invariance of the multi-curve for a fibred polynomial dynamics which will be still quadratic
since the Lagrange Interpolation polynomial will be linear.

4.2 Fixed Points of the quadratic polynomial

Consider the canonical form of a quadratic polynomial

qc(z) = z2 + c, z ∈ C∗,

it is well known that the fixed points of qc are given by

z1(c) =
1

2
+

√
1

4
− c, & z2(c) =

1

2
−
√

1

4
− c (8)

If c = 1/4, qc possesses one, and only one fixed point; otherwise, there are always two
distinct fixed points. It is a classical well-known fact the c = 1/4 is a parabolic parameter
of the Mandelbrot set, whose Julia set has the form of a Cauliflower.

Let ε > 0, x0 > 0 such that

0 ≤ x0 < 1/4 and
ε2

1
4 − ε2x0

< 1 (9)

and consider the parametric curve C : T1 → C given by,

C(θ) = 1

4
− ε2x0 − ε2e2πiθ, (10)
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that is, C : T1 → C is a simple continuous loop around the parabolic parameter c = 1/4. If
we keep tracking the fixed points z1(C(θ)), z2(C(θ)) when θ goes from 0 to 1 (in T1), we see
that this tour to the loop of parameters gives rise to a transposition of the fixed points, as
we will see in the next lines.

Now, if we substitute the form of c = C(θ) in the solutions (8) we have

z1(θ) =
1

2
+ ϵeπiθ

√
1 + x0e−2πiθ

and

z2(θ) =
1

2
− ϵeπiθ

√
1 + x0e−2πiθ,

and they form a set of fixed points, and if we take −1 = eπi their concatenation γ̃ : T1 → C

γ̃(θ) = 1/2 + εe2πiθ
√
1 + x0e−4πiθ,

induces an invariant 2-curve Γ = (z1 z2) for the static quadratic polynomial P (θ, z).

Remark 4. As was mentioned above, this Γ is our candidate for an invariant 2-curve for
a fibred quadratic dynamics.

Consider the static fibred quadratic dynamics, that is, with α = 0,

Q : T1 × C → T1 × C
(θ, z) 7→ (θ, qC(θ)(z)).

(11)

.

Proposition 1. The 2-curve Γ = (z1 z2) is invariant for the static fibred polynomial
Q(θ, z) = (θ, qC(θ)(z)).

Proof. Note that the lifting Q̂ of Q, is given by

Q̂ : T1 × C → T1 × C
(θ, z) 7→ (θ, qC(⟨2θ⟩)(z)),

with Π2(θ, z) = (⟨2θ⟩, z). A direct calculation shows that qC(⟨2θ⟩)(γ̃(θ)) = γ̃(θ), and hence
Γ is invariant for Q (here α = 0). 2

Note that if we permute the order of the fixed points z1 and z2, for Γ = (z2 z1), we have
another lifting curve γ̃2 given by the relation

γ̃2(θ) = γ̃(θ + 1/2).

We re-label both permutations by γ̃1 and γ̃2 respectively. It is not difficult to see that γ̃2 is
also invariant for Q̃.

4.3 From Static to Fibred. The Post-Composition

For α > 0 small enough, we want to “transform” Q̂ in such a way that z1 and z2 still
form an invariant 2-curve for a fibred quadratic polynomial. For each θ ∈ T1, consider the
two pairs of points (γ̃1(θ), γ̃2(θ)) and (γ̃1(θ+

α
2 ), γ̃2(θ+

α
2 )), and define the linear fibred map

L̃α : T1 × C → T1 × C
(θ, ζ) 7→ (θ, ℓ̃θ(ζ)),

9



where ℓ̃θ is given by the Lagrange interpolation polynomial (affine, since n = 2) between
the pairs of points considered above. Then,

ℓ̃θ(γ̃1(θ)) = γ̃1(θ +
α

2
), and ℓ̃θ(γ̃2(θ)) = γ̃2(θ +

α

2
).

The following result is immediate from the construction.

Proposition 2. For α > 0, and ℓ̃θ and qC(θ) as above, define the fibred quadratic polynomial

Q̃ = L̃α ◦ Q̂,

that is,

Q̃ : T1 × C → T1 × C
(θ, ζ) 7→ (θ + α

2 , ℓ̃θ ◦ qC(⟨2θ⟩)(ζ)).

Then the unfolding curve γ̃ is an invariant curve for Q̃.

Proposition 3. Let α ∈ (0, 1)\Q small enough. For ε and x0 as in (9), there exists a fibred
quadratic polynomial in canonical form

(θ, z) 7→ (θ + α, z2 + C0(θ))

containing an attracting invariant 2-curve. If x0 = 0, the invariant 2-curve is indifferent.

Proof. We prove this using the small perturbation procedure given by the Lagrange
Interpolation Polynomial post-composition, as described above. We define our perturbation
on the static model,

P (θ, z) = (θ, z2 + C(θ)),
where C(θ) is given by (10). We know that the curves

z1(θ) =
1

2
+ ϵeπiθ

√
1 + x0e−2πiθ

and

z2(θ) =
1

2
− ϵeπiθ

√
1 + x0e−2πiθ,

form a set of fixed points, and their concatenation γ̃ : T1 → C

γ̃(θ) = 1/2 + εe2πiθ
√
1 + x0e−4πiθ,

induces an invariant 2-curve Γ = (z1 z2) for the static quadratic polynomial P (θ, z).
Now, we calculate the multiplier of the (unfolding) invariant curve of the lifted system

P̃ (θ, z).
For this, note that, if γ̃(θ) is the (unfolding) invariant curve for the lifted fibred polyno-

mial, then γ̃(θ)
∣∣
[0,1/2]

= z1(2θ) and γ̃(θ)
∣∣
[1/2,1]

= z2(2θ), and hence

log(κ(γ̃(θ))) =

∫
T1

log |2γ̃(θ)|dθ =

∫ 1/2

0

log |2γ̃(θ)|dθ +
∫ 1

1/2

log |2γ̃(θ)|dθ

=

∫ 1/2

0

log |2z1(2θ)|dθ +
∫ 1

1/2

log |2z2(2θ)|dθ =

∫ 1/2

0

log |4z1(2θ)z2(2θ)|dθ

=

∫ 1/2

0

log |4C(2θ)|dθ =
1

2

∫ 1

0

log |4C(θ)|dθ.

10



So, for the case α = 0 it is enough to calculate the integral

2 log(κ(γ̃)) =

∫ 1

0

log |4C(θ)|dθ.

From the form in 10 and the conditions on ε and x0, we have

2 log(κ(γ̃)) =

∫ 1

0

log |4C(θ)|dθ

=

∫ 1

0

log |4(1/4− ε2x0)|dθ +
∫ 1

0

log

∣∣∣∣1− ε2

1/4− ε2x0
e2πiθ

∣∣∣∣ dθ,
so, if

0 ≤ x0 < 1/4 and
ε2

1
4 − ε2x0

< 1

then κ(γ) < 1, and if x0 = 0 κ(γ) = 1.
Hence, the curve is attracting (indifferent for x0 = 0) for the static fibred polynomial.

But we are interested in the non-static fibred case α > 0, that is, after applying Lagrange
interpolation and normalizing to the canonical form.

A direct calculus shows that the fibred quadratic polynomial, in its canonical form ob-
tained this way, is given by

Q(θ, z) =

(
θ + α, z2 +

C(θ)

u(θ + α)

)
,

where

u(θ) = [A(θ)]−1 ·
∞∏
j=0

[
A(θ + jα)

A(θ + (j + 1)α)

] 1

2j+1
,

and

A(θ) =
eπiα

√
1 + x0e−2πi(θ+α)√
1 + x0e−2πiθ

,

with the invariant 2-curve given by

Γ0 =
1

u(θ)
· (z1 z2),

and corresponding unfolding

γ̃0(θ) =
γ̃(θ)

u(θ)
.

Remark 5. Note that if α > 0 is sufficiently small, the product in the above relation is very
close to 1, so u(θ) is very close to [A(θ)]−1.

So, the multiplier of the (unfolding) invariant 2-curve is

κ(γ̃0) = exp

(∫
log

∣∣∣∣2γ̃(θ)u(θ)

∣∣∣∣ dθ) = exp

(∫
log |γ̃(θ)|dθ −

∫
log

∣∣∣∣u(θ)2

∣∣∣∣ dθ) .

Hence, for γ̃0 (and then Γ) to be attracting, it is enough that∫
log

∣∣∣∣u(θ)2

∣∣∣∣ dθ =

∫
log |2A(θ)| dθ = 0. (12)

11



But, A(θ) =
eπiα

√
1 + x0e−2πi(θ+α)

√
1 + xe−2πiθ

, and from Remark 12 Equation (12) reduces to

∫
log |

√
1 + x0e−2πiθ|dθ =

∫
log |

√
1 + x0e−2πi(θ+α)|dθ = 0,

which follows by noticing that each integral above is the real part of the integral∫
|z|=r

f(z)dz,

where f(z) =
√
1 + z and r = x0 in the former and f(z) =

√
1 + eπiαz and r = x0 in the

former. We conclude that
κf (Γ0) = κ(γ̃0) < 1.

This way, the 2-curve Γ0 =
1

u(θ)
· (z1 z2) is an attracting invariant multi-curve for the fibred

quadratic polynomial
P (θ, z) =

(
θ + α, z2 + C(θ)

)
,

with C(θ) = C(θ)/u(θ + α). It is clear from the proof, that if x0 = 0, κ(Γ0) = 1, and the
2-curve is indifferent. 2

Fibred combinatorics (τ = 1)

In the above construction, by obtaining the invariance of the curve in the lifting, dy-
namically we stay over the same ‘part’ of the 2-curve. We recall that a n-curve may have
defined a combinatorics “over the fibred”.
For the case of the 2-curve, there are only two possible combinatorics.

• The dynamics stay in the same part of the curve (τ = 0).

• The dynamics do “jumps” between the two parts (τ = 1).

It is clear that τ = 0 in the above construction. For τ = 1, the Lagrange interpolation
polynomial (affine) ℓ̃, may be defined by the pairs

(γ̃0(θ), γ̃1(θ)) and (γ̃1(θ +
α

2
), γ̃0(θ +

α

2
)).

However, the idea of taking α > 0 sufficiently small is that the Lagrangian interpolation
polynomial l̃ is very close to the identity so that the composed fibered polynomial P ◦ l̃ is,
in fact, a small perturbation of the static dynamics.

There is another way to obtain a 2-invariant curve with “jumping integer” τ = 1. Let’s
consider the parameterized curve, ε > 0 small,

C(θ) = −3

4
− ε2e2πiθ

That is, C : T1 → C is a simple closed curve around the parameter, which is a parameter
with parabolic multiplicity equal to 2.

Given the static quadratic polynomial

P (θ, z) = (θ, z2 + C(θ)),

12



we have that the sets (curves) of periodic points of period 2 are given by:

z1(θ) = −1

2
+ εeπiθ and z2(θ) = −1

2
− εeπiθ

with

pθ(z1(θ)) = z2(θ) and pθ(z2(θ)) = z1(θ).

In other words, the dynamics (in each iteration) “jumps” between the two curves z1 and
z2.

Similar to the previous case, the curve γ̃ : T1 → C given by

γ̃1(θ) = −1

2
+ ϵe2πiθ

induces the 2-curve Γ = (z1, z2). Furthermore γ̃1 is an invariant curve for the static quadratic
polynomial

(θ, z) 7→ (θ, z2 + C(⟨2θ⟩)).

Now, for sufficiently small α > 0 we take the (linear) Lagrange Interpolation polynomial
that sends z1(θ) to z1(θ+

α
2 ) and z2(θ) to z2(θ+

α
2 ), we have the following analogous result

for τ = 1.

Lemma 4. For sufficiently small α > 0 and τ = 1 define the fibred quadratic polynomial.

P̃ : T1 × C → T1 × C
(θ, z) 7→ (θ + α+τ

2 , z2 + C(⟨2θ⟩)),

Then the (unfolding) curve γ̃1 is invariant for P̃ .

Proposition 4. The 2-curve Γ = (z1 z2) is an invariant multi-curve of fibred quadratic
polynomial

F (θ, z) = (θ + α+ τ, ℓ̃θ/2(z
2 + C(⟨2θ⟩)), (13)

where τ = 1 is the jumping integer for the fqp.

Remark 6. Conditions (9), also imply that the parametric curve of the perturbed fibred
quadratic polynomial P (θ, z) has topological degree one with respect to c0 = 1/4.

5 Searching for 3-curves

There are two well-known parametrizations for quadratic dynamics.

z 7→ Pc(z) = z2 + c, c ∈ C and z 7→ Qλ(z) = λz + z2, λ ∈ C.

The former generates the picture of the famous Mandelbrot set, defined as

Mc = {c ∈ C : {Pn
c (c)}n∈N is bounded}

This parametrization is based on the behavior of the only critical value zc = c. On the
other hand, the further parametrization is based on the dynamical nature of the two fixed
points of the system, In particular, λ ∈ D corresponds to a quadratic dynamics with an

13



Figure 4: Mandelbrot Set

Figure 5: The Lambda space Λ

attracting fixed point (for λ = 0, z = 0 is a super-attracting fixed point). The parameter
space can be defined as

Λλ = {λ ∈ C : {Qn
λ(−λ/2)}n∈N} is bounded}.

From the definition, it follows that

Par := {λ = e2πiθ : θ ∈ Q},

is the set of parameters with a parabolic fixed point. We have a natural correspondence (2 to
1) between the sets Λλ and Mc, given by the conjugation by Tλ/2(z) = z+λ/2 (zλ = −λ/2
corresponds to the critical point of Qλ). The corresponding quadratic function is

Pλ(z) = z2 +
λ

2

(
1− λ

2

)
.

Note that λ = 1 corresponds to the critical value c = 1/4 and λ = −1 to c = −3/4 as

14



expected. It follows that the map

λ 7→ λ

2

(
1− λ

2

)
,

is a correspondence (2-1) between the Lambda space and the Mandelbrot set.
One of the parabolic fixed points with 3-petals, in the Lambda space, is given by the

parameter λ0 = e
2πi
3 , then the quadratic polynomial

pλ0(z) = z2 + λ0

has a parabolic fixed point with 3-petals. So, λ0 is a center candidate for the fibred (family

Figure 6: Filled-in Julia set for pλ0 . The red point corresponds to the parabolic fixed point. It
can be appreciate the 3-petals around it.

of) quadratic polynomial with α = 0.
For α = 0, consider the (static) fibred quadratic polynomial

P : T1 × C → T1 × C
(θ, z) 7→ (z, pλ0(z) + ε2e2πiθ),

with ε > 0 sufficiently small (ε ∼ 1/100). Here are some images of the filled Julia set,
corresponding to some of the θ’s values.

Conjecture 1. By “tracking” the corresponding 3-periodic points generated by the pertur-
bation of the parabolic fixed point at λ0, we have an invariant 3-curve.

5.1 The rational quadratic 3-curve

Conjecture 1 in the previous section has two basic obstacles: there is no closed formula to
find the 3-period points of the quadratic polynomial, and if we could know the 3-cycle, the
Lagrange Interpolation polynomial is no longer linear, now is quadratic, so the polynomial
obtained with it is now of degree 4.

Nevertheless, it is possible to maintain the degree when we construct the 3-curve, but
there is a price to pay. The fibred dynamics is now rational. It is well known that the Möbius
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transformations are 3-transitive: that is, given two set of points (z1, z2, z3) and (w1, w2.w3),
there exists a Möbius transformation mapping zi to wi.

Let γ : T1 → C∗ be a simple (and small) loop around the parabolic parameter λ0

mentioned before. Consider the “fibred” quadratic polynomial given by

P : T1 × C → T1 × C
(θ, z) 7→ (z, z2 + γ(θ)).

The polynomial pθ(z) = z2+γ(θ) may be considered as a loop-perturbation of the polynomial
z 7→ z2 + λ0 (parabolic implosion). In this sense, for every θ ∈ T1, pθ has a 3-cycle
(γ0(θ), γ1(θ), γ2(θ)). By the continuity of γ, this 3-cycle moves continuously on T1 × C.

Now, for α > 0 sufficiently small, consider the two 3-tuples (γ0(θ), γ1(θ), γ2(θ)) and

(γ0(θ + α), γ1(θ + α), γ2(θ + α)), for each θ ∈ T1. Now, for each θ ∈ T1, let M : Ĉ → Ĉ be
the Möbius transformation that maps (γ0(θ), γ1(θ), γ2(θ)) into (γ0(θ+α), γ1(θ+α), γ2(θ+α))

(here, Ĉ denotes the Riemann sphere). The following result follows from a direct calculation.

Proposition 5. Given the fibred rational quadratic dynamics,

Q : T1 × C → T1 × C
(θ, z) 7→ (z + α,M(z2 + γ(θ))),

for a suitable loop γ with index number 1 with respect to the parabolic parameter λ0, then
the 3-cycle (γ0(θ), γ1(θ), γ2(θ)) is an invariant 3-curve for Q.
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Thesis, L’Université Paris XI Orsay, 2007.

[Po2] Ponce Mario, Local dynamics for fibred holomorphic transformations, Nonlinearity,
Nonlinearity, 20(12), 2007, p. 2939-2955.

[Po4] Ponce Mario, Fibred quadratic polynomials can admit two attracting invariant curves,
Proc. Amer. Math. Soc., 139, 2011, p. 1467-1468.
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General Jofré 462, Santiago, Chile.
idominguezc@ucsh.cl.

17


	Introduction
	Invariant curves
	Multi-curves
	Invariant multi-curves
	Dynamically invariant multi-curves exist.
	Dynamical nature of multi-curves

	Invariant 2-curves for small perturbation of a static quadratic dynamics
	Fibred quadratic polynomials
	The `static' fibred polynomial

	Fixed Points of the quadratic polynomial
	From Static to Fibred. The Post-Composition

	Searching for 3-curves
	The rational quadratic 3-curve


