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Abstract— Respiratory disease, the third leading cause of 
deaths globally, is considered a high-priority ailment re- 
quiring significant research on identification and treatment. 
Stethoscope-recorded lung sounds and artificial intelligence- 
powered devices have been used to identify lung disorders 
and aid specialists in making accurate diagnoses. In this 
study, audio-spectrogram vision transformer (AS-ViT), a new 
approach for identifying abnormal respiration sounds, was 
developed. The sounds of the lungs are converted into visual 
representations called spectrograms using a technique called 
short-time Fourier transform (STFT). These images are then 
analyzed using a model called vision transformer to identify 
different types of respiratory sounds. The classification was 
carried out using the ICBHI 2017 database, which includes 
various types of lung sounds with different frequencies, noise 
levels, and backgrounds. The proposed AS-ViT method was 
evaluated using three metrics and achieved 79.1% and 59.8% 
for 60:40 split ratio and 86.4% and 69.3% for 80:20 split ratio 
in terms of unweighted average recall and overall scores re- 
spectively for respiratory sound detection, surpassing previous 
state-of-the-art results. 

Index terms— Respiratory sound, Lung Sound, Audio Spec- 
trogram Vision Transformers (AS-ViT), ICBHI 2017 

I. INTRODUCTION 
According to the World Health Organization (WHO), 

chronic respiratory disorders (CRDs) are among the leading 
causes of death globally [1]. Chronic obstructive pulmonary 
disease (COPD) alone is responsible for about 6% of deaths 
globally and is a progressive, fatal lung disease that impairs 
airflow in the lungs, leading to increased risks of exacer- 
bations. Although it cannot be cured, treatment can help 
reduce the risk of mortality and alleviate symptoms. Chronic 
pulmonary disease is not a single illness but encompasses a 
group of disorders affecting lung function, such as asthma, 
COPD, occupational lung diseases, and pulmonary hyperten- 
sion. 

Early detection of this respiratory disease is crucial, and 
pulmonary auscultation has been a standard part of medical 
examinations since the 19th century [2]. Pulmonary ausculta- 
tion is a non-invasive, quick, inexpensive, and simple method 
that can be performed well even by inexperienced physicians 
or laypeople. However, the success of this method depends 
largely on the examiner’s experience and ear acuity. The 
lungs have several auscultation points in the chest, sides, 
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and back, with different sound characteristics corresponding 
to different lung sections and chest anatomy. To accurately 
diagnose, the stethoscope must be positioned properly on 
the lung surface to differentiate the lung sounds from other 
background noise. 

Recent technological advancements have led to the devel- 
opment of digital stethoscopes that can record lung sounds 
and save them on computers. The integration of digital signal 
processing techniques with lung sound analysis has become 
possible in recent years and has been used to improve 
diagnostic efficiency. This research was conducted to develop 
an approach that yields more consistent and reliable results 
with greater efficiency and can be supervised, if neces- 
sary.Advancements in wireless technologies and IoT have 
extended the reach of automated diagnoses, making them 
more widely available and accessible when combined with 
cloud services. However, the complexity of lung physiology 
leads to highly variable sound dynamics that are influenced 
by factors such as location, patient posture, airflow intensity, 
age, weight, and gender, making signal processing in lung 
sound analysis a challenging task [3]. Consequently, experts 
may offer different subjective interpretations of the same 
sounds. Therefore, establishing a standardized set of char- 
acteristics that could serve as indicators for specific illnesses 
is difficult, which hinders the implementation of automatic 
diagnoses. 

In this paper, we proposed and evaluated a novel audio- 
spectrogram vision transformer (AS-ViT) model to detect 
and categorize abnormal lung sounds. The AS-ViT involves 
converting the spectrogram of the analyzed waveform into 
patches, flattening and embedding them into a sequence, 
and then applying position embedding to preserve position 
information. The resulting sequence was processed through 
multiple attention layers to generate a final representation, 
which was then fed into a SoftMax classification layer for 
classification. The objective of this work was to provide a re- 
liable tool for healthcare professionals to assess lung diseases 
associated with these sounds, with the aim of improving the 
accuracy and robustness of anomalous sound detection and 
classification in noisy or challenging environments. 

The remainder of this paper is organized as follows. The 
proposed AS-ViT system is described in Section 2. The 
experiments and results are discussed in Section 3. Finally, 
the conclusions and future work are presented in Section 4. 

II. THE PROPOSED AS-VIT SYSTEM 
In this section, we present AS-ViT, a model approach for 

generating generic audio representations. 
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Fig. 1. The proposed Audio Spectrogram Vision Transformer (AS-ViT) architecture: (a) the primary architecture of the proposed model; (b) the Transformer 
encoder module; (c) the Multiscale-self attention (MSA) head, and (d) the self-attention (SA) head. 

 
A. Audio-Spectrogram Vision Transformers (AS-ViT) 

The audio waveform of t seconds is transformed into a 
spectrogram, as illustrated in Figure 1(a) 1 (a). A log-mel 
spectrogram was used instead of the raw waveform as the 
input for the AS-ViT model. Spectrograms are widely used 
in the audio, speech, and music fields because they contain 
abundant low-level acoustic information, which resembles 
images, making them a suitable choice for ViTs. Let S = 

input. In the first stage, Picture X from the training set is 
divided into non-overlapping patches. Each patch is treated 
as a separate token by the transformer before being fed into 
the encoder. Two separate classifiers, the token, and distiller 
classifiers are attached to the top of the encoder. During the 
testing phase, the average of both classifiers is considered 
the final prediction. The model components are discussed in 
detail subsequently. 

1) Encoder Module: The data-efficient image transformer 
r 
i=1,...n , represent a set of spectrogram images. Here architecture, a modified version of the ViT model that 

Xi, is an spectrogram image and yi is its corresponding label 
yi  1, 2, 3, .., m , where m is the number of defined class 
for the set. 

The ViT architecture is based entirely on the traditional 
Transformer design [4], The design has received considerable 
attention in recent years owing to its exceptional performance 
in tasks such as machine translation and other natural lan- 
guage processing (NLP) applications. At the highest level, 
an image is split into smaller segments called patches, and a 
series of linear representations of these patches are used as 
input for a transformer. Patches in an image are processed 
similarly to tokens (words) in NLP applications. The Trans- 
former uses an encoder-decoder architecture and can process 
sequential input without the need for a recurrent network, 
owing to its self-attention mechanism, which enables it to 
capture long-range connections between different parts of 
the sequence. This mechanism has contributed significantly 
to the success of transformer models. 

Transformers underperform when trained on small 
datasets, because they lack the inductive biases found in 
CNNs, such as the ability to focus on specific areas of an 
image. However, when trained on large datasets, they have 
been shown to achieve or exceed the current state-of-the-art 
performance on many image recognition benchmarks. The 
architecture of the model is shown in Figure 1. It consists 
of a transformer encoder that takes spectrogram images as 

requires less training data, is used in the encoder part of 
the model. The spectrogram is transformed into a sequence 
of N 16 × 16 patches, with an overlap of six in both the 
time and frequency dimensions, before being input into the 
model. N is the number of patches and the effective input 
sequence length for the transformer. It is calculated as N = 
12d (100t - 16)/10e. 

2) Linear Projection Layer: Before being fed into the 
encoder, a sequence of patches is transformed into a vector 
with a model dimension of d through linear projection using 
a learned embedding matrix E. This vector, along with a 
learnable classification token, is concatenated to perform 
classification. The positional information of the patches is 
also added to the patch representations to maintain their 
original spatial arrangements. 

3) Vision Transformer Encoder: The sequences of the 
embedded patches are transmitted to the transformer en- 
coder, as illustrated in Figure 1(b). The transformer encoder 
comprises L identical layers, each composed of two key 
elements: (1) a multi-head self-attention block (MSA), and 
(2) a fully-connected feed-forward dense block multilayer 
perceptron (MLP). The MLP block contains two dense layers 
separated by a GeLU activation function. Both components 
of the encoder layer have residual skip connections and are 
normalized using layer normalization. The final output of the 
encoder is the first element in the sequence, z0, which is then 
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sent to an external classifier for class label prediction. 

y = LN(z0) (1) 

The MSA block in the Transformer encoder is a critical 
part of the transformer encoder.Its role is to assess the 
importance of a given patch embedding relative to other 
embeddings in the sequence. As illustrated in Figure 1(c), 
the MSA block consists of four layers: a linear layer, self- 
attention layer, concatenation layer that combines the outputs 
of multiple attention heads, and final linear layer, which 
evaluates the relative importance of each patch embedding 
in the sequence by computing the weighted sum of all Z 
values. The SA head is responsible for computing the dot 
product among the query, key, and value vectors to calculate 
the attention weights for each sequence patch. The SA block 
is composed of four layers: a linear layer, self-attention 
layer, concatenation layer (which merges the outputs from 
multiple attention heads), and final linear layer. Fig. 1(d) 
shows the computation within the SA block. The input 
sequence is multiplied by three learned matrices, UQKV query 
(Q), key (K), and value (V ) to produce three values for 
each element. To determine the importance of each sequence 
patch, the SA block calculates the dot product between the 
query vector of an element and the key vectors of all other 
elements. The dot-product results are then scaled and fed into 
a softmax function. The SA block performs the dot-product 
operation similar to a regular dot product, but includes the Dk 
dimension as a scaling factor. The softmax output is mltiplied 
by the value vector of each embedded patch to determine the 
patch with the highest attention score. This entire process can 
be summarized by three equations. 

[Q, K,V ] = zUQKV ,UQKV ∈ Rdx3DK (2) 

A. Data Acquisition 
The 2017 ICBHI dataset includes 920 recordings from 126 

patients spanning a total of 5.5 h. Each respiration cycle in 
the recordings has been classified by an expert as normal, 
crackle, wheeze, or both crackle and wheezing. The duration 
of these cycles varies, as shown in Figure 2, ranging from 
0.2 s to 16.2 s (mean cycle length: 2.7 s) across the four 
classes. 

The audio recordings are obtained using four distinct types 
of instruments: the AKGC417L Microphone, 3M Littmann 
Classic II SE Stethoscope, 3M Littmann 3200 Electronic 
Stethoscope, and the WelchAllyn Meditron Master Elite 
Electronic Stethoscope. Previous research revealed that un- 
even representation of patients and respiration cycles across 
different classes results in a distorted data distribution, which 
can affect model performance significantly. 

 

 
Fig. 2.  Respiratory Cycles Duration 
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(3) B. Experimental Setup 

Before training the model, further data preparation steps 

SA(z) = A.V (4) 

The MSA block in the encoder calculates the attention 
scores for each patch embedded in the sequence, relative to 
the others. This is achieved by performing the scaled dot- 
product attention calculation h times, using different Q, K, 
and V matrices each time. The outputs from each of the 
h heads are then combined and transformed using a feed- 
forward layer with learnable weights w. The mathematical 
expression for the operation is as follows: 

 
MSA(z) = Concat(SA1(z); SA2(z); ...SAh(z))W,W  Rh.Dkx 

(5) 

III. EXPERIMENTS 
In this section, we describe the experimental setup, in- 

cluding the data preparation process. We then present the 
results of our experiments on AS-ViT and the analysis of 
our findings. 

were performed. First, information about crackles and 
wheezing, including the start and end times in seconds, was 
obtained by reading each item on the list. A list was created 
to gather this data, which included the patient ID and type 
of recording (stereo or mono) for later use. Additionally, 
the audio file was divided into smaller parts to isolate the 
breathing section of the sound, as indicated by the start and 
end times listed in the text files. 

To keep all spectrograms the same size, regardless of their 
different lengths, a duration of 10 s was set for each in- 
stance. Instances longer than 10 s were trimmed, and shorter 
instances were filled with zeros. During the training phase, 
the instances were randomly trimmed, During the test phase, 
however, they were trimmed from a predetermined starting 
point to maintain consistency in the evaluation methods. 
Additionally, to enhance the accuracy of the outcomes, a 
subject-independent division was implemented on the initial 
training dataset. Specifically, samples for training and vali- 
dation were split 60:40 and 80:20, respectively. The original 
test set was used for evaluation. 



 

Throughout our experiments, we employed the ViT-Base 
model, which was established using the parameters outlined 
in [5]. The model comprised 12 encoder layers, each of 
which featured 12 attention heads, an embedding dimension 
of 768, and a feed-forward subnetwork size of 3072. The 
model was initially pre-trained on the Imagenet-21k dataset, 
which included 14 million images and 21,843 classes, and 
subsequently fine-tuned on the Imagenet-1k dataset. 

C. Evaluation Metrics 
In this study, for ease of comparison with other models, the 

proposed model was evaluated using the same measurement 
as that used in the 2017 ICBHI assessment. The evaluation 
metrics were the average score (AS), which is the average 
sensitivity (SE) and specificity (S), as stated in the challenge 
[6]. 

TABLE I 
EXPERIMENTAL RESULTS FROM ICBHI 2017 RESPIRATORY DATA 

 

Model Precision Recall Score 

Split Ratio 60:40 
LungBRN [7] 31.1 69.2 50.2 

LungRN+NL [8] 41.3 63.2 52.3 
CNN+CBA+BRC [9] 40.2 71.8 55.3 

CNN+CBA+BRC+FT [9] 40.1 72.3 59.8 
ARSCNet [10] 46.4 67.1 56.8 
AS-ViT (ours) 40.6 79.1 59.8 

Split Ratio (80:20) 
LungRN+NL [8] 63.7 64.7 64.2 

CNN+CBA+BRC [9] 54.4 79.7 67.1 
CNN+CBA+BRC+FT [9] 53.7 83.3 68.5 

AS-ViT (ours) 52.1 86.4 69.3 
 
 
 
 

respiratory sound detection, surpassing previous state-of-the- 
Sensitivity, Se =  Pc + Pw + Pb 

 
Crackle,Wheeze, Both 

(6) art results. Future studies are recommended to investigate 
alternative techniques for transformer compression and create 

Speci f icity   Pn  lightweight models. 
, Sp = Normal (7) 
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