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We introduce and investigate the Color Chiral Cherenkov effect which consists in radiation

of the circularly polarized gluons by a fast color charge moving with constant velocity in

the presence of the Chiral Magnetic current. We derive the transition rates for all gluon

polarizations. We compute the contribution of the Color Chiral Cherenkov effect to the

parton energy loss in the quark-gluon plasma.

I. INTRODUCTION

A fast particle carrying electric charge and moving in a medium with chiral fermions can lose

a significant portion of its energy by means of the Chiral Cherenkov radiation [1–4]. It is emitted

due to the unique dispersion relation of the electromagnetic field and is closely related to the chiral

magnetic [5–9] and anomalous Hall effects [8, 10–13]. Thus far all studies of the Chiral Cherenkov

radiation focused on the media governed by the Quantum Electrodynamics because of possible

technological applications. However, it is clear that the color version of the Chiral Cherenkov

effect is expected to give a significant contribution to the energy loss in strongly interacting media

with chiral fermions. We therefore set in this paper to derive the color version of the Chiral

Cherenkov effect and estimate its magnitude in the quark-gluon plasma.

The color version of the chiral magnetic effect—the induction of the color current in the direction

of the color magnetic field—can be described by letting the θ-angle slowly vary with time. The

gluon field excitations in the chiral medium supporting the chiral magnetic current are governed

by the Lagrangian [14–16]:

L = −1

2
Tr (FµνF

µν)− cA
2
θTr

(
FµνF̃

µν
)
, (1)

where the field tensor is

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] . (2)

Aµ = Aa
µt

a and Fµν = F a
µνt

a, where ta are the SU(3) generators. F̃µν = 1
2ϵµνλρF

λρ is the dual

field tensor. The external pseudo-scalar field θ is sourced by the topological charge and cA is the

anomaly coefficient.
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The equations of motion derived from the Lagrangian (1) depend only on the gradient ∂µθ. We

adopt a model of the quark-gluon plasma with spatially homogeneous and slowly time dependent

θ: cA∂µθ = b0δµ0, where b0 is the (constant) chiral magnetic conductivity. As a result the chiral

magnetic current ja = b0B
a emerges as a source of the color magnetic field in Amper’s law.

The chiral magnetic current modifies the spectrum of the gluon excitations, which can be found

by solving the equations of motion without the self-interaction terms:

∂νF
µν + bνF̃

µν = 0 , (3)

along with the Bianchi identity. In the radiation gauge, the corresponding vector potential obeys

the equation

∂2
tA−∇2A = b0(∇×A) . (4)

The plane wave solutions of (4) are circularly polarized and have the dispersion relation

ω2 = k2 − λb0|k| , (5)

where k = (ω,k) and λ = ±1 indicate the right or left polarization. With the account of the

screening effects the in-medium gluons have the dispersion relation

ω2 = k2 + µ2(k) = k2 − λb0|k|+ ω2
p , (6)

where µ is the gluon mass parameter and ωp is the plasma frequency. Actually, Eq. (6) is the short

wavelength limit of the full dispersion relation [17, 18], which nevertheless suffices for the present

calculation. Throughout the paper we assume that b0 is positive. Since Eq. (6) scales with λb0,

the negative b0 case can be obtained by the replacement b0 → −b0 and λ → −λ.

The chiral term in the gluon dispersion relation generates the spacelike gluon mode ω2−k2 < 0

which opens the possibility for novel 1 → 2 processes that are otherwise prohibited in QCD by

energy and momentum conservation. This effect is analogous to the Cherenkov radiation where the

spacelike excitations of the electromagnetic field produced by a particle moving at a speed greater

than the phase velocity of light, represent the propagating wave solution in dielectric materials.

In chiral media, the chiral conductivity effectively contributes to the medium dielectric response

making possible excitation of the gauge field wave. This effect is referred to as the Chiral Cherenkov

radiation. We refer to its QCD version as the Color Chiral Cherenkov radiation.

Unlike QED, where the chrial Cherenkov radiation is described by a single diagram e → eγ,

where the photon dispersion relation is modified by the anomaly, in QCD there are two possible
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FIG. 1. 1 → 2 processes contributing to the Color Chiral Cherenkov radiation. The anomalous contributions

come about by the way of the gluon dispersion relation (6) and as an extra term in the triple-gluon vertex

(10). The latter fact is indicated by the big red circle.

channels depicted in Fig. 1. The first of these channels q → qg is quasi-Abelian. The corresponding

emission rate can be derived from the Abelian expression by including the appropriate color factors.

We performed this calculation in [3]. The novel channel is g → gg where all three gluons are

excitations of the chiral medium. It is the focus of the present article.

The paper is structured as follows. The next section deals with the Feynman rule for the

triple-gluon vertex stemming from the second term in the right-hand-side of (1). The main result,

namely, the transition rates for all quark and gluon polarization states is derived in Sec. III. Sec. IV

discusses the energy loss due to the Color Chiral Cherenkov radiation. The summary and outlook

are presented in Sec. V.

II. THE TRIPLE-GLUON VERTEX

The diagrams contributing to the Color Chiral Cherenkov radiation are depicted in Fig. 1.

Whereas the anomaly does not affect the Feynman rule of the fermion-gluon vertex, it does modify

the triple-gluon one. To derive the rule we write in the second term in (1)

Tr
(
FµνF̃µν

)
= 2∂µK

µ (7)

where

Kµ = ϵµνρσ Tr

(
Aν∂ρAσ − g

2i

3
AνAρAσ

)
(8)

and integrate by parts the corresponding term in the action. The result is

Sθ = cA

∫
∂µθϵ

µνρσ

(
1

2
Aa

ν∂ρA
a
σ − g

2i

3

1

4
ifabcAa

νA
b
ρA

c
σ

)
d4x . (9)

The first term in (9) contributes to the equation of motion (3), while the second one to the triple-

gluon vertex. The variation of action Sθ with respect to three gluon fields produces the Feynman
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rule for the anomalous contribution to the triple-gluon vertex in momentum space:

anomalous triple-gluon vertex = gbµϵ
µνρσfabc , (10)

where we follow the conventions of [19]. This is the only new Feynman rule due to the anomalous

term in the Lagrangian (1). The red circle in Fig. 1 includes both the conventional and anomalous

contributions.

III. THE CHIRAL CHERENKOV RADIATION RATE

The radiation rates can be computed as

dWa→bc =
g2Ca→bc

2(2π)2

∑
ss′

δ(ω + E′ − E)δ(k + p′ − p)
1

8EE′ω
|Ma→bc|2d3p′ d3k , (11)

where the sum runs over the fermion polarization states, Ma→bc are the amplitudes without color

generators ta and the structure constants fabc, and Ca→bc are the color factors. The color factors

are given by

Cq→qg =
1

Nc
tr(tata) =

N2
c − 1

2Nc
=

4

3
, (12)

Cg→gg =
(fabc)2

N2
c − 1

= Nc = 3 . (13)

The matrix elements read:

iMq→qg = iūp′s′/e
∗
kλups , (14)

iMg→gg = iMA
g→gg + iMB

g→gg

= (epλ0 · e∗kλ)(p+ k) · e∗p′λ′ + (e∗kλ · e∗p′λ′)(p′ − k) · epλ0 − (epλ0 · e∗p′λ′)(p+ p′) · e∗kλ
− ibµϵ

µνρσepλ0,νe
∗
kλ,ρe

∗
p′λ′,σ , (15)

where epλµ’s are the circular polarization vectors and the superscripts A,B refer to the second and

third lines of (15) respectively. Note that not just the last line in (15), but all terms in (14) and

(15) depend on the anomaly by the way of the dispersion relation (6).

We perform the calculation in the high-energy approximation, meaning that the momenta of all

particles along the jet axis are much larger than the transverse momenta and the effective mass.
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Let z be the jet axis, then

p =

(
E, 0, 0, E − k2⊥ + x(1− x)µ2(E)

2x(1− x)E

)
, (16a)

k =

(
ω, k⊥, 0, ω − k2⊥ + µ2(ω)

2ω

)
, (16b)

p′ =

(
E′,−k⊥, 0, E

′ − k2⊥ + µ2(E′)

2E′

)
, (16c)

where the mass parameter in (6) becomes µ2(ω) ≈ ω2
p−λb0ω and x = ω/E is the fraction of energy

of the incident parton carried away by the gluon k. Eqs. (16) assume that k⊥ ≪ E,E′, ω and

|µ| ≪ E,E′, ω. The latter condition is equivalent to b0 ≪ E,E′, ω.

Given (16), the polarization vectors can be chosen as

epλ0 =
1√
2
(0, 1, λ0i, 0) , (17a)

ekλ =
1√
2

(
0, 1, λi,−k⊥

ω

)
, (17b)

ekλ =
1√
2

(
0, 1, λ′i,

k⊥
E′

)
, (17c)

The integral over the p′ in (11) is trivial considering the delta function expressing the momentum

conservation. The remaining delta function in q → qg rate reads:

δ(E′ + ω − E) = 2x(1− x)Eδ
[
k2⊥ + µ2(ω)(1− x) +m2x2

]
,

= 2x(1− x)Eδ
[
k2⊥ + (ω2

p − λb0xE)(1− x) +m2x2
]
. (18)

Clearly, the argument of this delta-function can vanish only if λb0 > 0. We assumed in Introduction

that b0 > 0. Therefore, only the right-polarized gluons λ > 0 can be radiated by the incident quark.

Moreover, the energy conservation, expressed by the argument of the delta function (18), can be

satisfied only if

xq→qg
− < x < xq→qg

+ , (19)

where

xq→qg
± =

ω2
p + λb0E ±

√
(ω2

p − λb0E)2 − 4m2ω2
p

2(m2 + λb0E)
. (20)

The requirement that (20) have real values sets the infrared threshold for the energy of the incident

quark:

E > E1 =
2mωp + ω2

p

b0
. (21)
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The delta function in g → gg rate reads:

δ(E′ + ω − E) = 2x(1− x)Eδ
[
k2⊥ + xµ2(E′) + (1− x)µ2(ω)− x(1− x)µ2(E)

]
= 2x(1− x)Eδ

[
k2⊥ + ω2

p(1− x+ x2)− b0E(λ+ λ′ − λ0)x(1− x)
]
. (22)

In this case the gluon emission is possible only if λ+ λ′ > λ0. Apparently only the following four

channels are allowed: gL → gRgL, gL → gLgR, gR → gRgR, gL → gRgR. In the first three of these

channels λ+ λ′ − λ0 = 1, whereas in the last one λ+ λ′ − λ0 = 3. Additionally,

xg→gg
− < x < xg→gg

+ , (23)

where

xg→gg
± =

ω2
p + (λ+ λ′ − λ0)b0E ±

√
(ω2

p − (λ+ λ′ − λ0)b0E)2 − 4ω4
p

2(ω2
p + (λ+ λ′ − λ0)b0E)

. (24)

The requirement that (24) have real values sets the infrared threshold for the energy of the incident

gluon:

E > E2 =
3ω2

p

b0
. (25)

The amplitude Mq→qg was computed in [1]:

∑
ss′

|Mq→qgR |2 = 4

[
EE′ −m2 − (k · p)(k · p′)

k2

]
, (26)

∑
ss′

|Mq→qgL |2 = 0 . (27)

For the gluon splitting amplitudes we find

iMA
gR→gRgR

=
k⊥

x(1− x)
, (28a)

iMA
gL→gRgL

=
(1− x)k⊥

x
, (28b)

iMA
gL→gLgR

=
xk⊥

(1− x)
, (28c)

iMA
gL→gRgR

= O(k2⊥/E, b0/E) , (28d)

iMB
g→gg =

−b0k⊥(λ(1− x) + λ′x+ λ0)

x(1− x)E
. (28e)

provided that k⊥, b0 ≪ E,E′, ω. In the high energy limit MB
g→gg appears only as a sub-leading

correction to MA
g→gg and is therefore can be neglected in our calculation. We note incidentally,
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that MB
gL→gRgR

= 0 so that the anomalous vertex correction does not contribute even in the sub-

leading channel (28d). Substituting (26),(28),(12),(13) into (11) and summing over the final gluon

polarizations we derive

dWq→qg

dk2⊥dx
=

αsg
2

3x2(1− x)E

[
(1 + (1− x)2)k2⊥ +m2x4

]
δ
(
k2⊥ + µ2(1− x) +m2x2

)
, (29a)

dWgR→gg

dk2⊥dx
=

3αsg
2

2x2(1− x)2E
k2⊥δ

(
k2⊥ + ω2

px
2 + (ω2

p − b0ω)(1− x)
)
, (29b)

dWgL→gg

dk2⊥dx
=

3αsg
2

2E

[
(1− x)2

x2
+

x2

(1− x)2

]
k2⊥δ

(
k2⊥ + ω2

px
2 + (ω2

p − b0ω)(1− x)
)
. (29c)

One can easily identify in (29) the contributions to the standard splitting functions Pgq(x) and

Pgg(x) corresponding to gluon emission. Integrating over the transverse momentum k⊥ we obtain

the spectra of the gluon emission rate:

dWq→qg

dx
=

αsg
2

3x2E

{[
1 + (1− x)2

] (
b0xE − ω2

p

)
− 2m2x2

}
Θ
(
xq→qg
+ − x

)
Θ
(
x− xq→qg

−
)
, (30a)

dWgλ0→gg

dx
=

3αsg
2

4x2(1− x)2E

{(
b0Ex− ω2

p

)
(1− x)− ω2

px
2
}{[

x4 + (1− x)4
]
δλ0,−1 + δλ0,1

}
×Θ

(
xg→gg
+ − x

)
Θ
(
x− xg→gg

−
)
. (30b)

Here Θ is the Heaviside step-function, and λ0 = ±1 is the right/left-hand polarizations of the

incident gluon.

IV. COLOR CHIRAL CHERENKOV RADIATION IN QUARK-GLUON PLASMA

We now consider the rate of gluon radiation due to the color chiral magnetic current in quark-

gluon plasma. The plasma frequency and the quark thermal mass are given by ω2
p = g2T 2

18 (2Nc +

Nf ) and m2 = g2T 2

16Nc
(N2

c − 1) respectively [20]. Using these equations in (30) we compute the

anomalous contribution to the gluon emission spectra from quark-gluon plasma shown in Fig. 2.

We emphasize that this calculation takes into account only the anomaly–induced radiation which is

but a fraction of the total gluon radiation. One can observe that the gluon spectrum is constrained

by the thresholds (20),(24). The thresholds nearly coincide in the infrared, but are different in the

ultraviolet part of the spectrum. The right-handed gluons decay most readily except in the far

infrared which is dominated by the radiation off the quark.

The contribution of the Color Chiral Cherenkov radiation to the energy loss by a fast parton

propagating in quark-gluon plasma along the z-axis is given by

−dEa→bc

dz
=

∫ E

0
ω
dWa→bc

dω
dω = E

∫ 1

0
x
dWa→bc

dx
dx . (31)
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FIG. 2. The Color Chiral Cherenkov radiation rates versus x = ω/E. The channels q → qg, gR → gg, and

gL → gg are represented by blue, orange, and green lines respectively. Left panel: E = 20 GeV, right panel:

E = 100 GeV. Both panels: g = 2, T = 300 MeV, b0 = 50 MeV.

Substituting (30) into (31) yields for each channel

−dEq→qg

dz
=
2αsg

2

3

{
(xq→qg

+ − xq→qg
− )

[
(xq→qg

+ + xq→qg
− − 8)b0E − 8m2 − 2ω2

p

]
+ (b0E + ω2

p) ln
xq→qg
+

xq→qg
−

}
Θ(E − E1) , (32a)

−dEgR→gg

dz
=
3αsg

2

4

{(
b0E − ω2

p

)
ln

xg→gg
+

xg→gg
−

− 2
(
b0E + ω2

p

)
(xg→gg

+ − xg→gg
− )

}
Θ(E − E2) , (32b)

−dEgL→gg

dz
=
αsg

2

4

{
3
[
(b0E + 2ω2

p)
2 − ω4

p

]
b0E + ω2

p

ln
xg→gg
+

xg→gg
−

− (17b0E + 21ω2
p)(x

g→gg
+ − xg→gg

− )

}
Θ(E − E2) . (32c)

In the high energy limit b0E ≫ m2, ω2
p equations (32) simplify as follows:

− dEq→qg

dz
=

4αsg
2b0E

9
, (33a)

− dEgR→gg

dz
=

3αsg
2b0E

4

(
ln

b0E

ω2
p

− 1

)
, (33b)

− dEgL→gg

dz
=

3αsg
2b0E

4

(
ln

b0E

ω2
p

− 17

6

)
. (33c)

Fig. 3 exhibits the contribution of the Color Chiral Cherenkov radiation to the parton energy loss.

We observe in that at high energy the right-hand gluon loses more energy than the left-handed one

and the quark, while at lower energy the quark channel is the main mechanism of energy loss.

The energy loss of a jet consisting of many q,q̄,g states is determined by solving the system

of coupled evolution equations for the parton distribution functions. Suppose that fa(x) are the



9

10 20 50 100
E (GeV)

0.001

0.010
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-
dE
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GeV

fm

FIG. 3. The rate of energy loss due to the Color Chiral Cherenkov radiation for q → qg (blue), gR → gg

(orange), and gL → gg (green). Parameters: g = 2, T = 300 MeV, b0 = 50 MeV.

momentum distribution functions of a species a = q, q̄, g normalized as∑
a

∫ 1

0
fa(x)xdx = 1 . (34)

Then, the jet energy loss is

−dE

dz
=

∑
a

∫ 1

0
dxfa(x)

(
−dEa

dz

)
, (35)

where the partial energy losses are given by Eqs. (32). Of course, jet energy loss due to the chiral

anomaly is only a fraction of the total energy loss and therefore its phenomenological significance

can be assessed only by incorporating the anomaly–induced corrections into the standard evolution

equations.

V. SUMMARY AND OUTLOOK

We investigated the Color Chiral Cherenkov radiation—the QCD analogue of the Chiral

Cherenkov effect in QED—and applied the results to study its role in the energy loss and jet

quenching in the quark-gluon plasma. Our main result is the gluon emission rates (30) by quark

and gluons in the chiral medium. The resulting energy loss is given by Eqs. (32).

A number of approximations were made to derive these results. Firstly, we assumed that the

medium is homogeneous such that b = cA∇θ = 0. One can consider a complimentary scenario

where b is finite and b0 vanishes. The corresponding rate of gluon emission by a fast quark can be
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obtained similarly to QED, by substituting b0 → |b| cosβ where β into (30) is the angle between b

and the outgoing gluon [1, 4]. Gluon radiation by a fast gluon at finite b, on the other hand, requires

further analysis. However, it should be noted that while MB
g→gg gives a sub-relativistic correction

in a homogeneous medium, it gives no contribution at all in the inhomogeneous case. Indeed,

the scattering amplitude MB
g→gg = −ibµϵ

µνρσepλ0,νe
∗
kλ,ρe

∗
p′λ′,σ is antisymmetric with respect to

exchange of bµ and any polarization vector. As such if b0 = 0, then MB
g→gg must be proportional

to the zeroth component of one of the polarization vectors. Therefore, given that the zeroth

component is zero (see (17)), MB
g→gg vanishes.

Secondly, we assumed that the radiating particle is ultra-relativistic throughout the entire pro-

cess. As a result, the spectrum in the quark channel exhibits discontinuous behavior at x = xq→qg
+ ,

as can be seen in Fig. 2. By including non-relativistic corrections for the outgoing particle, one

may expect the rate of gluon emission to drop smoothly to zero as x tends to 1. This correction

has very little effect on the rate of energy loss, however it may play a role in parton evolution of

jet.

Comparing the decay rates of the left-handed and right-handed gluons in Fig. 2, one finds that

in a medium with b0 > 0, the left-handed gluons decay more slowly when compared to right-handed

ones. As a result jets develop strong left-hand polarziation. This is the clearest manifestation of

the chiral anomaly in the jet structure.

The chiral imbalance is also imprinted into the jet loss pattern seen in Fig. 3: the right-handed

gluons loose a lot more energy than the left-handed ones. However, as the jet energy increases, the

difference between the gluon polarizations becomes less pronounced since the energy loss is driven

primarily by the large polarization independent logarithms in (33). These logarithms also enhance

the relative contribution of gluons as compared to quarks to the energy loss at high energies. In

contrast, at low energy, the energy loss is dominated by quarks as seen in Fig. 3. We stress again

that these conclusions hold only for energy loss due to the Color Chiral Cherenkov radiation,

ignored all other contributions. A recent review of the conventional mechanisms of energy loss can

be found in [21].

In conclusion, energy loss due to the Color Chiral Cherenkov radiation is significant. Therefore

a comprehensive phenomenological analysis requires incorporation of the novel energy loss channels

into the numerical packages describing jets in hot nuclear medium.
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