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ON THE INDEPENDENCE NUMBER OF REGULAR

GRAPHS OF MATRIX RINGS

BOGDAN NICA

Abstract. Consider a graph on the non-singular matrices over a finite
field, in which two distinct non-singular matrices are joined by an edge
whenever their sum is singular. We prove an upper bound for the in-
dependence number of this graph. As a consequence, we obtain a lower
bound for its chromatic number that significantly improves a previous
result of Tomon.

1. Introduction

Let Mn(Fq) denote the ring of n × n matrices over Fq, the finite field
with q elements. The regular graph over Mn(Fq) has vertex set GLn(Fq),
the multiplicative group of non-singular matrices in Mn(Fq). Two distinct
matrices a, b ∈ GLn(Fq) are joined by an edge whenever a + b is singular,
that is, det(a + b) = 0. In what follows, we denote the regular graph over
Mn(Fq) by Γn(q). The case n = 1 being rather trivial, we assume n ≥ 2 in
what follows.

Regular graphs, and some of their subgraphs, have been investigated in
several papers. A result due to Akbari, Jamaali, and Seyed Fakhari [2] says
that, when q is odd, the clique number of the regular graph Γn(q) satisfies

ω(Γn(q)) ≤
n
∑

k=0

k!

(

n

k

)2

.

Interestingly, this bound is independent of q.
The chromatic number of the regular graph Γn(q) was studied by Tomon

[15]. For q odd, he showed that

χ(Γn(q)) ≥ (q/4)⌊n/2⌋,

though he believed that the above lower bound could be improved. In this
note we deduce a much better lower bound for χ(Γn(q)), on the order of
qn−1. Additionally, we remove the parity restriction on q; in fact, for even
q one could get an even better lower bound. Tomon also showed an upper

bound, χ(Γn(q)) = O(qn
2−n), for q odd. It would be interesting to further

narrow this wide gap between the lower and upper bounds.
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For bounds on the chromatic number for certain subgraphs of regular
graphs, see the works of Akbari, Aryapoor, and Jamaali [1], respectively
Bardestani and Mallahi-Karai [5].

Our main result is the following upper bound on the independence number
of the regular graph Γn(q).

Theorem 1.1. We have

α(Γn(q)) ≤ qn
2−n+1.

A lower bound on the chromatic number is then an immediate conse-
quence, as α(Γn(q)) · χ(Γn(q)) ≥ |GLn(Fq)|. We have

|GLn(Fq)| = (qn − 1)(qn − q) . . . (qn − qn−1) = cn(q) · q
n2

where

cn(q) = (1− q−1) . . . (1− q−n).(1)

Clearly, 0 < cn(q) < 1 for each n ≥ 1; in fact

1− q−1 − q−2 < cn(q) ≤ 1− q−1.

The lower bound for cn(q), the most useful one for our purposes, follows

from the stronger inequality 1 − q−1 − q−2 + q−(n+1) ≤ cn(q); this, in turn,
can be easily checked by induction.

We therefore deduce the following consequence.

Theorem 1.2. We have

χ(Γn(q)) ≥ (1− q−1 − q−2)qn−1.

The regular graphs under consideration are instances of a general graph-
theoretic construction over rings. Let R be a ring, and let Z(R) denote
the set of zero-divisors in R. The complement, R \ Z(R), is the set of
regular elements of R. The regular graph of R has vertex set R \ Z(R),
and two distinct elements a, b ∈ R \ Z(R) are joined by an edge whenever
a+ b ∈ Z(R). A related graph is the total graph of R, having vertex set R
and the same adjacency law. Thus, the total graph of R contains the regular
graph of R as an induced subgraph. Total and regular graphs over rings
were introduced by Anderson and Badawi [4], in the commutative context,
and then by Dolžan and Oblak [9] in general. For an overview of the study
of graphs over rings, we refer to the recent monograph [3].

Returning to the ring of interest, Mn(Fq), let us denote the corresponding
total graph by Tn(q). To clarify, the vertex set of Tn(q) is Mn(Fq), and two
distinct matrices a, b ∈Mn(Fq) are joined by an edge whenever det(a+b) = 0.
As we explain below, the total graph Tn(q) plays a key role in our approach.

We prove Theorem 1.1 by spectral methods. The most direct attack would
be to invoke Hoffman’s ratio bound. Recall, this says the following: if X is
a regular graph of degree d on v vertices, then

α(X) ≤
v

1− d/θmin
(2)
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where θmin is the smallest adjacency eigenvalue of X; see Haemers [11] for a
nice account. The regular graph Γn(q) may be viewed as the Cayley graph
of the general linear group GLn(Fq) with respect to the symmetric subset
S′ = {s ∈ GLn(Fq) : det(In + s) = 0}; if q is even, then the identity In
has to be removed from S′. This shows, firstly, that the regular graph Γn(q)
is regular in the graph-theoretic sense. It is, however, rather non-trivial to
evaluate the degree of Γn(q)–that is to say, the size of S′. Secondly, the
Cayley graph viewpoint offers a way to compute the adjacency spectrum
of the regular graph Γn(q), and the conjugation-invariance of the set S′ is
convenient to that end. Alas, this approach requires the character theory of
GLn(Fq).

We circumvent these difficulties by following a similar strategy in the
total graph Tn(q). The total graph, a supergraph of the regular graph, turns
out to be more amenable to spectral computations. The reason is that its
underlying set, Mn(Fq), is an abelian group under addition, so its character
theory is much simpler. We will prove that, in fact, the following holds.

Theorem 1.3. We have

α(Tn(q)) ≤ qn
2−n+1.

Theorem 1.1 clearly follows from Theorem 1.3.

2. Proof of Theorem 1.3

2.1. Sum-graphs. Let G be a finite abelian group, whose operation is writ-
ten additively, and let S be a subset of G. The sum-graph of G with respect
to S has vertex set G, and two distinct elements g, h ∈ G are connected
whenever g + h ∈ S.

The sum-graph construction is a variation on the Cayley graph construc-
tion. Two differences should be highlighted. Firstly, the sum-graph con-
struction yields a a simple graph–undirected and loopless–no matter what
S is; for the Cayley graph construction, one needs S to be symmetric. Sec-
ondly, a Cayley graph is regular, but a sum-graph need not be. In fact, the
sum-graph of G with respect to S is nearly |S|-regular: the vertex degrees
are |S| or |S| − 1. Vertices having degree |S| − 1 correspond to those g ∈ G
which satisfying 2g ∈ S. Two opposite cases are worth singling out:

• the ‘binary’ case, when G is an elementary 2-group, meaning that
2g = 0 for all g ∈ G; in this case, the sum-graph of G with respect
to S is the Cayley graph of G with respect to S \ {0};

• the ‘odd’ case, when |G| is odd; then there are |S| vertices of degree
|S| − 1, and the remaining |G| − |S| vertices have degree |S|.

The total graph Tn(q) is the sum-graph of the abelian group Mn(Fq) with
respect to the subset of singular matrices

S = {s ∈Mn(Fq) : det(s) = 0}.
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When q is even, we are in the ‘binary’ case; the total graph Tn(q) is regular
of degree |S| − 1 in this case. When q is odd, we are in the ‘odd’ case; the
total graph Tn(q) is no longer regular, in fact the singular matrices have
degree |S| − 1, while the non-singular matrices have degree |S|.

2.2. Laplacian spectrum of sum-graphs. The sum-graph structure of
the total graph Tn(q) unlocks the computation of its Laplacian spectrum.
Indeed, the following general result shows how to determine the Laplacian
eigenvalues of a sum-graph by using the characters of the underlying abelian
group.

Theorem 2.1. Let G be a finite abelian group, and let S ⊆ G. Then the

Laplacian eigenvalues of the sum-graph of G with respect to S are given

as follows: |S| −
∑

s∈S φ(s) for each real character φ, respectively |S| ±

|
∑

s∈S φ(s)| for each conjugate pair of non-real characters {φ, φ}.

Proof. By definition, the Laplacian operator L acts on a function φ : G→ C

as follows: for each vertex g ∈ G, we have

(Lφ)(g) = deg(g)φ(g) −
∑

h: h∼g

φ(h)

where deg(g) denotes the degree of the vertex g, and the latter sum is taken
over the vertices adjacent to g. The degree of a vertex g is either |S|, and
then the neighbors of g are {s − g : s ∈ S}, or |S| − 1, in which case the
neighbors of g are {s − g : s ∈ S} \ {g}. At any rate, we have

(Lφ)(g) = |S|φ(g) −
∑

s∈S

φ(s− g).

Now if φ : G→ C is a character, then

∑

s∈S

φ(s − g) =

(

∑

s∈S

φ(s)

)

φ(g).

By using the shorthand 〈φ, S〉 =
∑

s∈S φ(s) we may write, concisely,

Lφ = |S|φ− 〈φ, S〉φ.

It follows that, with respect to a suitable indexing of the basis provided
by the characters, L takes a block-diagonal form. Each real character φ
contributes a diagonal entry |S|−〈φ, S〉, and each conjugate pair of non-real
characters {φ, φ} contributes a 2× 2 matrix

(

|S| −〈φ, S〉

−〈φ, S〉 |S|

)

.

The eigenvalues of the above matrix are |S| ± |〈φ, S〉|. The spectrum of L is
now easily read off. �
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Theorem 2.1 is an analogue of the well-known recipe for computing spec-
tra of Cayley graphs over abelian groups. In the regular context, passing
between adjacency and Laplacian spectra is trivial. While there is no ap-
parent recipe for computing the adjacency spectrum of a sum-graph, let us
point out that, thanks to near-regularity, the adjacency eigenvalues can be
well-approximated by using the Laplacian eigenvalues.

If we remove the word ‘distinct’ from the definition of a sum-graph, then
the resulting graph is no longer simple–there may be loops sprouting at cer-
tain vertices. In the literature, one usually encounters the ‘loopy’ version of
sum-graphs. It is not hard to see that computing the Laplacian spectrum of a
(loopless) sum-graph is equivalent to computing the adjacency eigenvalues of
the ‘loopy’ sum-graph. The adjacency spectrum for ‘loopy’ sum-graphs has
been known for some time: see [12, Prop.1], [8, Thm.2.1]; compare also the
weaker version in [6, Sec.4]. Theorem 2.1 is therefore equivalent to a known
result. Yet, it appears to be formally novel–to the best of our knowledge, it
has not been explicitly stated, proved, or used in this form before.

There is at least one real character of G, the trivial character 1; fittingly,
it yields the trivial Laplacian eigenvalue λ = 0 for any sum-graph over G.
In the ‘binary’ case, each non-trivial character is real; in the ‘odd’ case, no
non-trivial character is real.

2.3. Laplacian eigenvalues of total graphs. We turn to applying Theo-
rem 2.1 to the total graph Tn(q). The set S is the complement of GLn(Fq)
in Mn(Fq), so

|S| = qn
2

− |GLn(Fq)| = qn
2

− cn(q) · q
n2

with cn(q) as in (1).
The characters of the additive group Mn(Fq) can be described by means of

a fixed non-trivial additive character ψ of Fq. For each matrix u ∈ Mn(Fq),
define φu :Mn(Fq) → C by

φu(x) = ψ

( n
∑

i,j=1

uij xij

)

.

Then φu is a character of Mn(Fq), and each character is of this form for
a unique u ∈ Mn(Fq). Formally, u 7→ φu is an isomorphism between the
additive group Mn(Fq) and its dual.

We also need the following evaluation, due to Li and Hu [13, Thm.2.1]: if
u ∈Mn(Fq) is a non-zero matrix of rank r, then

∑

a∈GLn(Fq)

φu(a) = (−1)r qn(n−1)/2
n−r
∏

i=1

(qi − 1).(3)
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As
∑

a∈Mn(Fq)
φu(a) = 0, we deduce that

∑

s∈S

φu(s) = −(−1)r qn(n−1)/2
n−r
∏

i=1

(qi − 1).(4)

Putting everything together, we deduce the following.

Theorem 2.2. The non-trivial distinct Laplacian eigenvalues of the total

graph Tn(q) are as follows:

• for q even,

|S|+ (−1)r qn(n−1)/2
n−r
∏

i=1

(qi − 1), r = 1, . . . , n;

• for q odd,

|S| ± qn(n−1)/2
n−r
∏

i=1

(qi − 1), r = 1, . . . , n.

Theorem 2.2 implies that the number of distinct Laplacian eigenvalues of
Tn(q) is n + 1 when q is even, respectively 2n + 1 when q is odd. It is a
general fact that the number of distinct Laplacian eigenvalues of a graph is
greater than its diameter. Here, however, we note that the diameter of Tn(q)
is very small–namely, 2–for all n ≥ 2. For if a, b ∈ Mn(Fq) are two distinct
vertices in Tn(q), then consider a vertex c ∈Mn(Fq) such that a+ c has zero
first row, while b+ c has zero second row; if c is distinct from a and b, then
c is adjacent to both a and b, whereas if c = a or c = b, then a and b are
already adjacent.

2.4. A Hoffman-type bound. Next, we wish to invoke the following gen-
eralization of Hoffman’s ratio bound (2): if X is a graph of minimal degree
δ on v vertices, then

α(X) ≤ v
(

1−
δ

λmax

)

(5)

where λmax is the largest Laplacian eigenvalue of X. The Hoffman-type
bound (5) was first proved by van Dam and Haemers [7, Lem.3.1], and then
rediscovered several times over, e.g., [10, Cor.3.6]. In the case of regular
graphs, (5) turns into the Hoffman bound (2). See also [14] for a refinement
of (5).

The final step towards the proof of Theorem 1.3 is applying the Hoffman-

type bound (5) to the total graph Tn(q). We have v = qn
2

and δ ≥ |S| − 1,
while λmax can be read off from Theorem 2.2. For the sake of uniformity, we
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simply estimate

λmax ≤ |S|+ qn(n−1)/2
n−1
∏

i=1

(qi − 1)

< |S|+ qn(n−1)/2
n−1
∏

i=1

qi = |S|+ qn
2−n.

(We could do better in the case when q is even.) Therefore

1−
δ

λmax
< 1−

|S| − 1

|S|+ qn2−n
=

qn
2−n + 1

|S|+ qn2−n
.

But |S| = (1− cn(q)) · q
n2

> q−1 · qn
2

= qn
2−1, and so

qn
2−n + 1

|S|+ qn2−n
<

qn
2−n + 1

qn2−1 + qn2−n
≤

1

qn−1
.

We conclude, as claimed, that

α(Tn(q)) ≤ qn
2

·
1

qn−1
= qn

2−n+1.

References

[1] S. Akbari, M. Aryapoor, M. Jamaali: Chromatic number and clique number of sub-

graphs of regular graph of matrix algebras, Linear Algebra Appl. 436(2012), no.7,
2419–2424

[2] S. Akbari, M. Jamaali, S.A. Seyed Fakhari: The clique numbers of regular graphs of

matrix algebras are finite, Linear Algebra Appl.431 (2009), no.10, 1715–1718
[3] D.F. Anderson, T. Asir, A. Badawi, T. Tamizh Chelvam: Graphs from rings,

Springer, Cham, 2021
[4] D.F. Anderson, A. Badawi: The total graph of a commutative ring, J. Algebra 320

(2008), no. 7, 2706–2719
[5] M. Bardestani, K. Mallahi-Karai: On the chromatic number of structured Cayley

graphs, J. Combin. Theory Ser. A 160 (2018), 202–216
[6] F.R.K. Chung: Diameters and eigenvalues, J. Amer. Math. Soc. 2 (1989), no. 2,

187–196
[7] E. van Dam, W.H. Haemers: Graphs with constant µ and µ̄, Graph theory (Lake

Bled, 1995), Discrete Math. 182 (1998), no. 1-3, 293–307
[8] M. DeVos, L. Goddyn, B. Mohar, R. Šámal: Cayley sum graphs and eigenvalues of

(3, 6)-fullerenes, J. Combin. Theory Ser. B 99 (2009), no. 2, 358–369
[9] D. Dolžan, P. Oblak: The total graphs of finite rings, Comm. Algebra 43 (2015), no.

7, 2903–2911
[10] C.D. Godsil, M.W. Newman: Eigenvalue bounds for independent sets, J. Combin.

Theory Ser. B 98 (2008), no. 4, 721–734
[11] W.H. Haemers: Hoffman’s ratio bound, Linear Algebra Appl. 617 (2021), 215–219
[12] W.-C.W. Li: Character sums and abelian Ramanujan graphs, J. Number Theory 41

(1992), no. 2, 199–217
[13] Y. Li, S. Hu: Gauss sums over some matrix groups, J. Number Theory 132 (2012),

no. 12, 2967–2976
[14] B. Nica: A relative bound for independence, Discrete Math. 342 (2019), no.12,

111607, 8 pp.



8 BOGDAN NICA

[15] I. Tomon: On the chromatic number of regular graphs of matrix algebras, Linear
Algebra Appl. 475 (2015), 154–162

Department of Mathematical Sciences

Indiana University Indianapolis

Email address: bnica@iu.edu


	1. Introduction
	2. Proof of Theorem 1.3
	2.1. Sum-graphs
	2.2. Laplacian spectrum of sum-graphs
	2.3. Laplacian eigenvalues of total graphs
	2.4. A Hoffman-type bound

	References

