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Abstract. There are many types of automata and grammar models
that have been studied in the literature, and for these models, it is com-
mon to determine whether certain problems are decidable. One problem
that has been difficult to answer throughout the history of automata
and formal language theory is to decide whether a given system M ac-
cepts a bounded language (whether there exist words w1, . . . , wk such
that L(M) ⊆ w1 · · ·wk?). Decidability of this problem has gone unan-
swered for the majority of automata/grammar models in the literature.
Boundedness was only known to be decidable for regular and context-
free languages until recently when it was shown to also be decidable
for finite-automata and pushdown automata augmented with reversal-
bounded counters, and for vector addition systems with states.

In this paper, we develop new techniques to show that the boundedness
problem is decidable for larger classes of one-way nondeterministic au-
tomata and grammar models, by reducing the problem to the decidability
of boundedness for simpler classes of automata. One technique involves
characterizing the models in terms of multi-tape automata. We give new
characterizations of finite-turn Turing machines, finite-turn Turing ma-
chines augmented with various storage structures (like a pushdown, mul-
tiple reversal-bounded counters, partially-blind counters, etc.), and sim-
ple matrix grammars. The characterizations are then used to show that
the boundedness problem for these models is decidable. Another tech-
nique uses the concept of the store language of an automaton. This is
used to show that the boundedness problem is decidable for pushdown
automata that can “flip” their pushdown a bounded number of times,
and boundedness remains decidable even if we augment this device with
additional stores.

⋆ The research of I. McQuillan was supported, in part, by Natural Sciences and Engi-
neering Research Council of Canada Grant 2022-05092 (Ian McQuillan)
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1 Introduction

There are many well-studied models of automata/grammars that are more pow-
erful than finite automata (denoted by NFA) but less powerful than Turing ma-
chines. Perhaps the most well-studied is the one-way nondeterministic pushdown
automata (NPDA) which accept the context-free languages. This model is very
practical — for example, the non-emptiness problem (“given a machine M , is
L(M) ̸= ∅?”), as well as the infiniteness problem (“given a machine M , is L(M)
infinite?”), can both be determined in polynomial time for NPDA [18].

Authors have studied models that are more powerful than NPDA, such as t-
flip NPDA (resp. finite-flip NPDA), which have the ability to flip their pushdown
stack at most t (resp. a finite number of) times [16,17]. Non-emptiness and
infiniteness are decidable for this model as well [17] (implied from their semilinear
Parikh image). Another more powerful model is simple matrix grammars, which
are a class of grammars that generates a family of languages properly between
the context-free languages and the matrix languages [20].

Other well-studied models with power between that of finite automata and
Turing machines is the one-way nondeterministic reversal-bounded multicounter
machines [21] (NCM). This is an NFA with some number of counters, where each
counter contains a non-negative integer, and transitions can detect if a counter
is non-empty or not. The condition of being r-reversal-bounded (resp. reversal-
bounded) enforces that in each accepting computation, the number of changes
between non-decreasing and non-increasing on each counter is at most r (resp.
a finite number). It is also possible to combine different types of stores. For
example, another class of automata is NPDA augmented by reversal-bounded
counters, denoted by NPCM. This device, which is strictly more powerful than
either NPDA or NCM, has an NP-complete non-emptiness problem [13].

We will also consider nondeterministic Turing machines with a one-way read-
only input tape and a single two-way read/write worktape, denoted by NTM.
While all of the problems above are undecidable for NTM, a t-turn (resp. finite-
turn) NTM are machines with at most t (resp. some number of) changes in direc-
tion on the worktape in every accepting computation (called reversal-bounded
in [12], but we call it finite-turn here). Again, the non-emptiness and infiniteness
problems are decidable for this model.

Another important property beyond emptiness and infiniteness is that of
boundedness. A language L ⊆ Σ∗ is bounded if there exist non-empty words
w1, . . . , wk such that L ⊆ w∗

1 · · ·w∗
k. Here, we explore further the important

decision problem called the boundedness problem: given machine M , is L(M) a
bounded language?”. In the early years of the study of formal language theory,
this property was shown to be decidable for NFA and NPDA by Ginsburg and
Spanier using a rather complicated procedure [8,9]. In contrast, if a class of
machines with an undecidable emptiness problem accepts languages that are
closed under concatenation with the language $Σ∗ (where $ is a new symbol
and Σ is an at least two letter alphabet), then the boundedness problem is
also undecidable for the class, because $Σ∗ concatenated with anything non-
empty is not bounded, and so L$Σ∗ is bounded if and only if L is empty. Until
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recently, the status of the boundedness problem had been elusive for essentially
all other machine/grammar models (besides NPDA) studied in the literature that
have a decidable emptiness problem. Finally, Czerwinski, Hofman, and Zetzsche
showed that the boundedness problem is decidable for vector addition systems
with states [4] (equivalent to one-way partially blind multicounter machines [10],
denoted by PBCM, that properly contain NCM). With PBCM, machines can add
and subtract from counters but cannot detect whether counters are empty or
not except that a machine crashes if a counter goes below zero, and a word is
accepted if it hits a final state with all counters being zero. Also, in [3], it was
determined that the boundedness problem for NPCM (and NCM) is not only
decidable, but also coNP-complete.

Here, we develop techniques for showing that the boundedness problem is
decidable. One technique involves creating characterizations in terms of multi-
tape versions of NFA, NCM, NPCM, and PBCM of the following:

1. finite-turn NTM in terms of multi-tape NFA,
2. finite-turn NTM augmented with reversal-bounded counters in terms of multi-

tape NCM,
3. finite-turn NTM augmented with a pushdown and reversal-bounded counters

where in each accepting computation, the pushdown can only be changed
during one sweep of the Turing tape, in terms of multi-tape NPCM,

4. finite-turn NTM augmented with partially blind counters in terms of multi-
tape PBCM.

These characterizations are then used to show decidability of the boundedness
(also emptiness and infiniteness) problem for each of the models. These results
are strong as any combination of two 1-turn stores has an undecidable emptiness
and thus boundedness problem. In model (3) above, the restriction that the
pushdown can only be used during one sweep (between two consecutive turns)
of the read/write tape cannot be dropped, as allowing one more sweep would
make both emptiness and boundedness undecidable. Note that the model in (3)
is more powerful than NPDA and finite-turn NTM, and can even accept non-
indexed languages [1]. For model (4), this model is strictly more powerful than
the family of PBCM languages. Hence, it is the most powerful model containing
non-semilinear languages with a known decidable boundedness problem. Using a
similar technique, we show that the boundedness problem is decidable for simple
matrix grammars (even when augmented with reversal-bounded counters).

Another technique involves the store language of a machine, which is the set
of strings that encode the contents of the internal stores that can appear in any
accepting computation. There are some automata models in the literature where
the family of store languages for that class can be accepted by a simpler type of
automata. We use this to show that the boundedness problem is decidable for
finite-flip NPDA. This is also true if augmented by reversal-bounded counters,
and by a finite-turn worktape where the flip-pushdown is only used during one
sweep of the worktape. Hence, this is the most powerful model properly contain-
ing the context-free languages with a known decidable boundedness problem.

All omitted proofs and some definitions are in the Appendix to help reviewers.
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2 Preliminaries and Notation

We assume knowledge of introductory automata and formal language theory
[18], including deterministic and nondeterministic finite automata, context-free
grammars, pushdown automata, and Turing machines.

Let N be the set of positive integers and N0 the non-negative integers. Given
a set X and t ∈ N, let ⟨X⟩t be the set of all t-tuples over X. Given a finite
alphabet Σ, let Σ∗ (resp. Σ+) be the set of all words (resp. non-empty words)
over Σ. Σ∗ includes the empty word λ. A language L is any subset of Σ∗, and
a t-tuple language L is any subset of ⟨Σ∗⟩t. Given a word w, the reverse of w,
denoted wR is equal to λ if w = λ, and anan−1 · · · a1 if w = a1a2 · · · an, ai ∈ Σ for
1 ≤ i ≤ n. The length of w, denoted by |w|, is equal to the number of characters
in w, and given a ∈ Σ, |w|a is the number of a’s in w. Given alphabet Σ =
{a1, . . . , am} and w ∈ Σ∗, the Parikh image of w, ψ(w) = (|w|a1 , . . . , |w|am);
and the Parikh image of a language L ⊆ Σ∗ is ψ(L) = {ψ(w) | w ∈ L}.
Although we will not provide the formal definition of a language being semilinear,
equivalently, a language is semilinear if and only if it has the same Parikh image
as some regular language [10]. Similarly, the Parikh image of (w1, . . . , wt) ∈
⟨Σ∗⟩t, ψ(w1, . . . , wt) = ψ(w1 · · ·wt), and for L ⊆ ⟨Σ∗⟩t, ψ(L) = {ψ(x) | x ∈ L}.
A class of machines/grammars is said to be effectively semilinear if, given such
a machine/grammar, a finite automaton with the same Parikh image can be
effectively constructed.

A t-tape NFA over Σ is a generalization of an NFA where there are t input
tapes and they take (w1, . . . , wt) ∈ ⟨Σ∗⟩t as input, and each transition is of the
form q′ ∈ δ(q, a, i), where the machine switches from state q to q′ and reads
a ∈ Σ ∪ {λ} from input tape i. This allows such a machine to accept a t-tuple
language. The formal definition appears in the Appendix.

We will augment t-tape NFAs with additional stores; e.g. a t-tape NPDA is a
t-tape NFA with an additional pushdown alphabet Γ , and δ becomes a partial
function with rules of the form (q′, γ) ∈ δ(q, a, i,X), where q, q′, a, i are as with t-
tape NFAs,X ∈ Γ is the topmost symbol of the pushdown which gets replaced by
the word γ ∈ Γ ∗. Configurations now include a third component which contains
the current pushdown contents, as is standard for pushdown automata [18]. We
can similarly define machines with multiple stores by defining the transitions to
only read and change one store at a time. Standard one-way single-tape acceptors
are a special case with only one input tape. Multi-tape inputs have been studied
for NPDA [15], NCM [21], and NPCM [23].

We will use all machine models with a one-way read-only input, including
those described in Section 1. Almost all stores we consider are formally defined in
[19], and we omit the formal definitions due to space constraints (see Appendix).

For all multi-tape machine models, they are effectively semilinear if and only
if 1-tape machines are effectively semilinear, because given a t-tape M , there is
a 1-tape machine M ′ that reads a from the tape whenever it can read a from
any tape of M ; hence ψ(L(M)) = ψ(L(M ′)).

It is known that for any type of nondeterministic machine model with reversal-
bounded counters, one can equivalently use monotonic counters [22] instead of
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reversal-bounded counters. Such machines have an even number k of counters
that we identify by C1, D1, . . . , Ck/2, Dk/2 that can only be incremented but not
decremented, transitions do not detect the counter status, and acceptance occurs
when the machine enters an final state with counters Ci and Di having the same
value for each i. Due to the equivalence, we will use the same notation as above
(NPCM, etc.) to mean machines with monotonic counters. Monotonic counters
are helpful in this paper because if we simulate an accepting computation of a
machine with another machine that applies the same changes but in a different
order, then the resulting simulation will still have matching monotonic counters.

3 Boundedness Using Multi-Tape Characterizations

3.1 Characterizations of Finite-Turn Turing Machines

We first look at finite-turn NTM, and finite-turn NTM with reversal-bounded
counters (denoted by finite-turn NTCM). These machines have previously been
studied both without counters [12] and with counters [14]. We give characteri-
zations of these machines in terms of multi-tape NFA and multi-tape NCM.

Example 1. Consider L = {w#w$v#v | w, v ∈ {a, b}∗, |w|a = |v|a, |w|b = |v|b}.
L can be accepted by a 4-turn NTCMM with four monotonic counters as follows:
on input w1#w2$v1#v2, M reads w1 and writes it to the tape while in parallel
recording |w|a and |w|b in two monotonic counters C1 and C2. When it hits #, it
turns and goes to the left end of the tape, and verifies w2 = w1. When it hits $, it
does the same procedure with the read/write tape to the right to verify v1 = v2,
while in parallel putting |v1|a and |v2|b on two monotonic counters D1 and D2.
It then accepts if the contents of C1 equals D1 and C2 equals D2. Although we
do not have a proof, we conjecture this cannot be accepted by an NPCM.

A t-turn NTM M is in state normal form if M makes exactly t turns on all
inputs accepted, the read/write head always moves to the right or left on every
move, and in every accepting computation, it always turns to the left (resp. the
right) on the same cell where it writes the current state on the tape. It can be
shown (see Appendix) that any t-turn NTM can be transformed into another in
state normal form that accepts the same language. For such a t-turn NTM M in
state normal form, define a t+ 1 tuple of symbols b = (b1, . . . , bt+1) where each
bi is in the worktape alphabet Γ . Let ∆ be the alphabet of these symbols. We
can think of a word in ∆∗ as representing a t+ 1 track worktape, where the ith
component is the ith track. For 1 ≤ i ≤ t+1, define a homomorphism hi from ∆∗

to Γ ∗ such that hi((b1, . . . , bt+1)) = bi. Given a t-turn NTM M in state normal
form, define the history language H(M) over ∆∗ as follows: H(M) contains all
strings x where there is an accepting computation of M such that hi(x) is the
string on the worktape after the ith sweep of the worktape and ht+1(k) is the
string on the worktape at the end of the computation after it has made the final
sweep after the last turn. This means if t is even (it is similar if odd)

h1(x) = q0x1q1, h2(x) = q2x2q1, . . . , ht(x) = qtxtqt−1, ht+1(x) = qtxt+1qt+1,
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where q0 is the initial state,M writes q0x1q1 on the first sweep, etc. until qtxqt+1,
which is the final worktape contents, and qt+1 is a final state.

Let t ≥ 1. For a t-tuple (w1, . . . , wt), wi ∈ Σ∗, let its alternating pattern be:

(w1, . . . , wt)
A =

{
w1w

R
2 · · ·wt−1w

R
t if t is even,

w1w
R
2 · · ·wR

t−1wt if t is odd.

If there is a t ≥ 1 with L ⊆ ⟨Σ∗⟩t, let LA = {(w1, . . . , wt)
A | (w1, . . . , wt) ∈ L}.

We now show that every t-turn NTM can be “converted” to a (t+ 1)-tape NFA.
Starting with M in state normal form, M ′ guesses a (t+ 1)-track string x ∈ ∆∗

letter-by-letter from left-to-right while checking in parallel that the input on
tape i would be read by the simulated moves on track i thereby verifying that
x ∈ H(M).

Lemma 2. Let t ≥ 0, and M be a t-turn NTM (resp. t-turn NTCM). We can
construct a (t + 1)-tape NFA (resp. (t + 1)-tape NCM) M ′ such that L(M ′)A =
L(M).

For the opposite direction, on the first sweep of the worktape, M ′ guesses
and writes a guessed sequence of transition labels of M , and then sweeps the
worktape once for each tape i to make sure the next section of the input word
of M ′ would be read by tape i in the simulation.

Lemma 3. Let t ≥ 0, and let M be a (t + 1)-tape NFA (resp. (t + 1)-tape
NCM). Then we can construct a t-turn NTM (resp. t-turn NTCM) M ′ such that
L(M ′) = L(M)A.

From the two lemmas above, we obtain:

Proposition 4. Let t ≥ 0. There is a (t+1)-tape NFA (resp. (t+1)-tape NCM)
M if and only if there is a t-turn NTM (resp. t-turn NTCM) M ′ such that
L(M ′) = L(M)A.

Further to the definition of bounded languages, we say L ⊆ ⟨Σ∗⟩t is a bounded
t-tuple language if L ⊆ B1 × · · · ×Bt, where each Bi is of the form w∗

1 · · ·w∗
n for

some w1, . . . , wn ∈ Σ+. Given L ⊆ ⟨Σ∗⟩t, let L(i) = {wi | (w1, . . . , wt) ∈ L}.
Let M be a class of multi-tape machines consisting of an NFA with zero or

more stores. Given a t-tapeM ∈ M, for each i, 1 ≤ i ≤ t, letMi be the one tape
machine in M that simulates moves that read from tape i by reading from the
input tape, but reads λ to simulate a read from other tapes. So, L(Mi) = L(i)

for all i, 1 ≤ i ≤ t. The following is easily verified:

Lemma 5. A t-tape M ∈ M is a bounded (resp. non-empty, finite) t-tuple
language if and only if L(Mi) is a bounded (resp. non-empty, finite) language
for each 1 ≤ i ≤ t.

Proof. The proofs for non-emptiness and finiteness are clear.
Assume L(M) is a bounded t-tuple language, and therefore there exists

B1, . . . , Bt, where each Bi is of the form w∗
1 · · ·w∗

n and L(M) ⊆ B1 × · · · × Bt.
Thus, for each i, L(Mi) ⊆ Bi, and is bounded.
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Assume each L(Mi) is bounded, and let Bi be such that L(M(i)) ⊆ Bi and
Bi is of the form w∗

1 · · ·w∗
n. Then, L(M) ⊆ B1 × · · · ×Bt. ⊓⊔

Using this characterization, we can show the following.

Proposition 6. The boundedness, non-emptiness, and infiniteness problems for
finite-turn NTM (resp. finite-turn NTCM) are decidable, and they are effectively
semilinear.

Proof. From Proposition 4, given a t-turn NTMM ′, there is a t+1-tape NFAM
with L(M)A = L(M ′). We will decide if L(M)A is bounded; indeed, we will show
L(M)A is bounded if and only if, for each i, 1 ≤ i ≤ t+ 1, L(Mi) is bounded.

Assume L(M)A = L(M ′) is bounded. Assume t is odd (with the even case
being similar). Then L(M)A = {w1w

R
2 · · ·wtw

R
t+1 | (w1, . . . , wt+1) ∈ L(M)} is

bounded. It is known that given any bounded language L, the reverse of L is
bounded, the set of subwords of L is bounded, and any subset of L is bounded
[9]. Hence, for each i, {wi | (w1, . . . , wt+1) ∈ L(M ′)} is bounded as, for i odd,
then this is a subset of the set of subwords of L(M)A, and for i even, it is the
reverse. This set is L(Mi), and so each L(Mi) is bounded.

Conversely, assume each L(Mi) is bounded for 1 ≤ i ≤ t + 1, and hence
L(Mi)

R is also bounded for i even. By Lemma 5, L(M) is a bounded t+1-tuple
language. Since the finite concatenation of bounded languages is bounded [9],
L(M)A is bounded.

Hence, L(M ′) is bounded if and only if, for each i, 1 ≤ i ≤ t + 1, L(Mi) is
bounded. Since these are each regular, we can decide this property.

The proof is the same for finite-turn NTCM using decidability of boundedness
for NCM [3,4].

Semilinearity follows from semilinearity of NFA and NCM [21], and since
ψ(L(M)) = ψ(L(M ′)). ⊓⊔

Although decidability for non-emptiness, finiteness, and effective semilinearity
were known for both finite-turn NTM and finite-turn NTCM [14], to our knowl-
edge, decidability of boundedness for both finite-turn NTM and for finite-turn
NTCM were not previously known.

3.2 Finite-Turn NTM with Pushdown and Counters

In this section, we provide a further generalized model by augmenting finite-
turn NTM with not only monotonic counters but also a pushdown where the
pushdown can only be used in a restricted manner:

A t-turn NTM augmented with monotonic counters and a pushdown is called
a t-turn NTPCM. Such a machine is called i-pd-restricted if, during every accept-
ing computation, the pushdown is only used the ith sweep (either left-to-right or
right-to-left) of the worktape; and a machine is pd-restricted if in every accept-
ing computation, the pushdown is only used in a single pass (it can be different
passes depending on the computation).
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Example 7. Let D1 be the language over the alphabet {a1, b1} generated by
the context-free grammar with productions S → a1Sb1S and S → λ. This
language is known as the Dyck language over one set of parentheses, and let
L = {x#x#x | x ∈ D1}. L can be accepted by a pd-restricted 4-turn NTPCM
machine (even without counters). Indeed, on input x1#x2#x3, a machineM can
use the pushdown to verify x1 ∈ D1 while in parallel copying x1 to the read/write
tape. Since this is the only pass where the pushdown is used, the machine is 1-
pd-restricted. Then it can match x1 against the input to verify x1 = x2 = x3.
It follows from [7] and [25] that L is not even an indexed language, a family
that strictly contains the context-free languages [1], and is equal to the family of
languages accepted by automata with a “pushdown of pushdowns” [6]. Thus, pd-
restricted NTPCM is quite a powerful model, containing all of NPDA, finite-turn
NTM, and even some non-indexed languages.

The characterization will use a restriction of multi-tape NPCM as follows.
Let i satisfy 1 ≤ i ≤ t. A t-tape NPCM is i-pd-restricted if, for every accepting
computation, the pushdown is only used when it reads from a single input tape.

The following is easy to verify. Any transition α that reads a ∈ Σ ∪{λ} from
input tape j ̸= i and uses the pushdown can be simulated by first reading a from
tape j but not changing another store, then in the next transition, reading and
changing the pushdown as in α while reading λ from tape i.

Lemma 8. Every t-tape NPCM can be converted to an equivalent i-pd-restricted
t-tape NPCM, for any 1 ≤ i ≤ t.

The next proposition follows a proof similar to Lemma 2 for one direction,
where the pushdown is only used in one track because it is only used on one sweep
of the NTPCM Turing tape; and for the other direction it first uses Lemma 8
and then follows the proof of Lemma 3 where it is verified that the pushdown
changes properly according to the guessed transition sequence by simulating the
pushdown in the ith sweep of the Turing tape.

Proposition 9. Let t ≥ 0. There is a (t + 1)-tape NPCM M if and only if
there is an i-pd-restricted t-turn NTPCM M ′ such that L(M ′) = L(M)A, for
any 0 ≤ i ≤ t.

For the next proof, we are able to strengthen the result to M being pd-
restricted rather than i-pd-restricted, seen as follows: Given a pd-restricted ma-
chineM , we can makeM1, . . . ,Mt+1, where eachMi accepts the strings accepted
by M for which the pushdown is used in sweep i. Thus, Mi is i-pd-restricted.
Furthermore, L(M) is bounded if and only if L(Mi) is bounded for each i. The
remaining proof is similar to that of Proposition 6 using the fact that emptiness,
infiniteness, and boundedness for NPCM are decidable [21,3].

Proposition 10. For every t ≥ 0, the boundedness, emptiness, and infiniteness
problems for pd-restricted t-turn NTPCM are decidable, and they are effectively
semilinear.
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Briefly, the result above can be generalized by replacing the pushdown with
other potential types of stores. Consider an NFA augmented with a storage struc-
ture S and the specification for updating S and possibly some necessary condi-
tion(s) on S for acceptance, in addition to the machine entering a final state. The
storage structure S can include multiple storage structures. We do not define
such a storage structure formally for simplicity, and the following result can be
thought of as a template for other models where decidability of boundedness can
be shown. However, definitions such as storage structures [5] and store types [19]
work. Examples of S are: pushdown; reversal-bounded counters (or equivalent
storage structures such as monotonic counters); partially blind counters; and
combinations of the structures, e.g., a pushdown and reversal-bounded counters.

We can examine S-restricted t-turn NTM augmented by S (denoted NTM(S))
where in every accepting computation, S can only be changed within a single
sweep of the worktape. We can show the following seeing that the pushdown in
the proof above can be replaced with other storage types.

Proposition 11. Let M be a class of NFA with storage structure S, whose
languages are closed under reversal, where the boundedness (resp. emptiness, in-
finiteness) problem for M are decidable. Then for every t ≥ 0, the boundedness
(resp. emptiness, infiniteness) problem for S-restricted t-turn NTM(S) are decid-
able. Furthermore, if M is augmented with additional reversal-bounded counters
(no restrictions on their use) has a decidable boundedness (resp. emptiness, in-
finiteness) problem, the corresponding problem for S-restricted t-turn machines
with reversal-bounded counters are decidable.

This provides new results for certain general types of automata with decidable
properties. For example, checking stack automata provide a worktape that can
be written to before the first turn, and then only operate in read-only mode.
They have a decidable emptiness and infiniteness problem. If we augment these
with a finite-turn worktape where the checking stack could only be used in a
single sweep, emptiness and infiniteness are decidable.

As with other results in this paper, a t-turn NTM (combined with other
stores) can be replaced with a t-turn checking stack. The restriction on NTPCM
to be S-restricted in Proposition 10 is needed, as the next proposition shows. Let
DCSA be deterministic checking stack automata. The first point uses undecid-
ability of non-emptiness of the intersection of two 1-turn deterministic pushdown
automata [2], the second problem uses undecidability of the halting problem for
Turing machines [18], the third point uses the undecidability of the halting prob-
lem for 2-counter machines [24], and the fourth point uses the third point.

Proposition 12. The emptiness (boundedness, infiniteness) problems are un-
decidable for the following models:

1. 1-turn NTM (or DCSA) with a 1-turn pushdown.
2. 2-turn DCSA with a 1-turn pushdown, even when the pushdown is used only

during the checking stack reading phase (i.e., after turn 1).
3. 1-turn NTM with an unrestricted counter.
4. 1-turn deterministic pushdown automata with an unrestricted counter.
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3.3 Finite-Turn NTM with Partially Blind Counters

Partially blind counter machines are multicounter machines (PBCM) where the
counters can be incremented or decremented but not tested for zero, however
the machine crashes if any of the counters becomes negative, and acceptance
occurs when the machine enters an accepting state with all the counters being
zero. The emptiness, finiteness, [10] and boundedness problems [3] have been
shown decidable for vector addition systems with states, which are equivalent to
partially blind multicounter machines [10]. The family of languages accepted by
these machines is a recursive family, does not contain all context-free languages
(as in the example below), but contains non-semilinear languages [10] (unlike all
the other models considered so far in this paper).

Here, we look at t-turn NTM augmented with partially blind counters, called
t-turn NTPBCM. It is pointed out in [10] that L = {w#wR | w ∈ {a, b}∗} is not
accepted by any PBCM. However, it is easily accepted by a NTPBCM (or even
a 2-turn NTM), which are therefore strictly more powerful.

We could augment a NTPBCM (or PBCM, t-tape PBCM) with monotonic
counters, but it is straightforward to see that each pair of monotonic counters
can be simulated by a pair of partially-blind counters, and we therefore do not
consider these machines with additional reversal-bounded counters.

The results in Section 3.1 concerned finite-turn NTM, optionally augmented
with monotonic counters. We will see next that these results hold if “monotonic
counters” is replaced by “partially blind counters”. However, monotonic counters
are easy to handle, as we can permute the order that counter changes are applied
in an accepting computation and the resulting computation does not change the
counter values. But this is not so for partially blind counters as changing the
orders can cause counters to go below zero, which is not allowed. But we can
modify the proof as follows:

Proposition 13. Let t ≥ 0. There is a (t + 1)-tape PBCM M if and only if
there is a t-turn NTPBCM M ′ such that L(M ′) = L(M)A.

Proof. One half of the proof follows an identical construction to that in the proof
of Lemma 3 where all counters are simulated on the first sweep while guessing
the transition sequence and the order of counter changes is the same.

For the reverse direction, the construction is a modification to that of Lemma
2. We describe the construction of M from M ′. Note that M ′ makes s = (t+1)
left-to-right and right-to-left sweeps on its worktape. If M ′ has k partially blind
counters C1, . . . , Ck,M will have sk partially blind counters called C1,j , . . . , Ck,j

for 1 ≤ j ≤ s. The simulation of all sweeps of the computation of M ′ on its
worktape are done in parallel. The counters in C1,j , . . . , Ck,j are used to simulate
the counters of M in sweep j. For odd j, the simulation is faithful, but for even
j, the simulation is backwards. The counters in Ci,1 are initially zero, as are Ci,s

if s is even. For all j even, Ci,j and Ci,j+1 are set nondeterministically to be the
same guessed values. The simulation of the computation ofM ′ on the even tracks
of the worktape (using counters Ci,j , j even) is done in reverse and in parallel
with the simulation of the odd tracks (using counters in Ci,j j odd). When the
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<latexit sha1_base64="OJKjASL4gXweHussb2vNEjwV8Vg=">AAACBHicbVA9SwNBEJ3zM8avqI1gsxgEq3AnEm2EgI1lBC8JJEfY2+wlS3Zvj909MRxpbW31P9iJrf/Dv+CvcJNcYRIfDDzem2FmXphwpo3rfjsrq2vrG5uFreL2zu7efungsKFlqgj1ieRStUKsKWcx9Q0znLYSRbEIOW2Gw9uJ33ykSjMZP5hRQgOB+zGLGMHGSj7rujdut1R2K+4UaJl4OSlDjnq39NPpSZIKGhvCsdZtz01MkGFlGOF0XOykmiaYDHGfti2NsaA6yKbHjtGZVXookspWbNBU/TuRYaH1SIS2U2Az0IveRPzPa6cmug4yFiepoTGZLYpSjoxEk89RjylKDB9Zgoli9lZEBlhhYmw+c1uIFAmnT8yMxkUbjrcYxTJpXFS8aqV6f1muHecxFeAETuEcPLiCGtxBHXwgwOAFXuHNeXbenQ/nc9a64uQzRzAH5+sXDmOYRw==</latexit>

i0 = 0
<latexit sha1_base64="W/a5N4OiziW5p5WgZAW4sWawunk=">AAACBHicbVA9SwNBEN3zM8avqI1gsxgEq3AnEm2EgI1lBC8JJEfY22ySJbu3x+6ceBxpbW31P9iJrf/Dv+CvcJNcYRIfDDzem2FmXhgLbsB1v52V1bX1jc3CVnF7Z3dvv3Rw2DAq0ZT5VAmlWyExTPCI+cBBsFasGZGhYM1wdDvxm49MG66iB0hjFkgyiHifUwJW8nm3euN2S2W34k6Bl4mXkzLKUe+Wfjo9RRPJIqCCGNP23BiCjGjgVLBxsZMYFhM6IgPWtjQikpkgmx47xmdW6eG+0rYiwFP170RGpDGpDG2nJDA0i95E/M9rJ9C/DjIexQmwiM4W9ROBQeHJ57jHNaMgUksI1dzeiumQaELB5jO3hSoZC/bEIR0XbTjeYhTLpHFR8aqV6v1luXacx1RAJ+gUnSMPXaEaukN15COKOHpBr+jNeXbenQ/nc9a64uQzR2gOztcvGBeYTQ==</latexit>

i6 = 0

<latexit sha1_base64="6g18HpgodCALMSK/MjetSz2YxGA=">AAACAnicbVDLSgNBEJz1GeMr6kXwMhgET2FXJHoMePEY0TwgWcLspDcZMrOzzMyKy5KbV6/6D97Eqz/iL/gVTpI9mMSChqKqm+6uIOZMG9f9dlZW19Y3Ngtbxe2d3b390sFhU8tEUWhQyaVqB0QDZxE0DDMc2rECIgIOrWB0M/Fbj6A0k9GDSWPwBRlELGSUGCvds57XK5XdijsFXiZeTsooR71X+un2JU0ERIZyonXHc2PjZ0QZRjmMi91EQ0zoiAygY2lEBGg/m546xmdW6eNQKluRwVP170RGhNapCGynIGaoF72J+J/XSUx47WcsihMDEZ0tChOOjcSTv3GfKaCGp5YQqpi9FdMhUYQam87cFipFzOGJmXRctOF4i1Esk+ZFxatWqneX5dpxHlMBnaBTdI48dIVq6BbVUQNRNEAv6BW9Oc/Ou/PhfM5aV5x85gjNwfn6BRRVl8c=</latexit>

i1

<latexit sha1_base64="JzsGKXpxgdsj3rrJvyrdq2DsYjU=">AAACAnicbVDLSgNBEJyNrxhfUS+Cl8EgeAq7QaLHgBePEc0DkiXMTibJkJnZZaZXXJbcvHrVf/AmXv0Rf8GvcJLswSQWNBRV3XR3BZHgBlz328mtrW9sbuW3Czu7e/sHxcOjpgljTVmDhiLU7YAYJrhiDeAgWDvSjMhAsFYwvpn6rUemDQ/VAyQR8yUZKj7glICV7nmv0iuW3LI7A14lXkZKKEO9V/zp9kMaS6aACmJMx3Mj8FOigVPBJoVubFhE6JgMWcdSRSQzfjo7dYLPrdLHg1DbUoBn6t+JlEhjEhnYTklgZJa9qfif14lhcO2nXEUxMEXniwaxwBDi6d+4zzWjIBJLCNXc3orpiGhCwaazsIWGMhLsiUMyKdhwvOUoVkmzUvaq5erdZal2ksWUR6foDF0gD12hGrpFddRAFA3RC3pFb86z8+58OJ/z1pyTzRyjBThfvxXxl8g=</latexit>

i2

<latexit sha1_base64="CRuBp/3Y4A/H5lT766oSa+T7RhU=">AAACAnicbVDLSgNBEJyNrxhfUS+Cl8EgeAq7KtFjwIvHiOYByRJmJ7PJkNmZZaZXXEJuXr3qP3gTr/6Iv+BXOEn2YBILGoqqbrq7glhwA6777eRWVtfWN/Kbha3tnd294v5Bw6hEU1anSijdCohhgktWBw6CtWLNSBQI1gyGNxO/+ci04Uo+QBozPyJ9yUNOCVjpnncvusWSW3anwMvEy0gJZah1iz+dnqJJxCRQQYxpe24M/oho4FSwcaGTGBYTOiR91rZUkogZfzQ9dYxPrdLDodK2JOCp+ndiRCJj0iiwnRGBgVn0JuJ/XjuB8NofcRknwCSdLQoTgUHhyd+4xzWjIFJLCNXc3orpgGhCwaYzt4WqKBbsiUM6LthwvMUolknjvOxVypW7y1L1KIspj47RCTpDHrpCVXSLaqiOKOqjF/SK3pxn5935cD5nrTknmzlEc3C+fgEXjZfJ</latexit>

i3

<latexit sha1_base64="WJtE4qYDXqXfWOMB0xL5NlKkBJg=">AAACAnicbVDLSgNBEJyNrxhfUS+Cl8EgeAq7EqLHgBePEc0DkiXMTmaTITM7y0yvGJbcvHrVf/AmXv0Rf8GvcJLswSQWNBRV3XR3BbHgBlz328mtrW9sbuW3Czu7e/sHxcOjplGJpqxBlVC6HRDDBI9YAzgI1o41IzIQrBWMbqZ+65Fpw1X0AOOY+ZIMIh5ySsBK97xX6RVLbtmdAa8SLyMllKHeK/50+4omkkVABTGm47kx+CnRwKlgk0I3MSwmdEQGrGNpRCQzfjo7dYLPrdLHodK2IsAz9e9ESqQxYxnYTklgaJa9qfif10kgvPZTHsUJsIjOF4WJwKDw9G/c55pREGNLCNXc3orpkGhCwaazsIUqGQv2xGE8KdhwvOUoVknzsuxVy9W7Sql2ksWUR6foDF0gD12hGrpFddRAFA3QC3pFb86z8+58OJ/z1pyTzRyjBThfvxkpl8o=</latexit>

i4

<latexit sha1_base64="sQATh8EdwpbxvJl0s30G5BtUnpQ=">AAACAnicbVDLSgNBEJyNrxhfUS+Cl8EgeAq7otFjwIvHiOYByRJmJ7PJkNmZZaZXXEJuXr3qP3gTr/6Iv+BXOEn2YBILGoqqbrq7glhwA6777eRWVtfWN/Kbha3tnd294v5Bw6hEU1anSijdCohhgktWBw6CtWLNSBQI1gyGNxO/+ci04Uo+QBozPyJ9yUNOCVjpnncvu8WSW3anwMvEy0gJZah1iz+dnqJJxCRQQYxpe24M/oho4FSwcaGTGBYTOiR91rZUkogZfzQ9dYxPrdLDodK2JOCp+ndiRCJj0iiwnRGBgVn0JuJ/XjuB8NofcRknwCSdLQoTgUHhyd+4xzWjIFJLCNXc3orpgGhCwaYzt4WqKBbsiUM6LthwvMUolknjvOxVypW7i1L1KIspj47RCTpDHrpCVXSLaqiOKOqjF/SK3pxn5935cD5nrTknmzlEc3C+fgEaxZfL</latexit>

i5

(a)

<latexit sha1_base64="6g18HpgodCALMSK/MjetSz2YxGA=">AAACAnicbVDLSgNBEJz1GeMr6kXwMhgET2FXJHoMePEY0TwgWcLspDcZMrOzzMyKy5KbV6/6D97Eqz/iL/gVTpI9mMSChqKqm+6uIOZMG9f9dlZW19Y3Ngtbxe2d3b390sFhU8tEUWhQyaVqB0QDZxE0DDMc2rECIgIOrWB0M/Fbj6A0k9GDSWPwBRlELGSUGCvds57XK5XdijsFXiZeTsooR71X+un2JU0ERIZyonXHc2PjZ0QZRjmMi91EQ0zoiAygY2lEBGg/m546xmdW6eNQKluRwVP170RGhNapCGynIGaoF72J+J/XSUx47WcsihMDEZ0tChOOjcSTv3GfKaCGp5YQqpi9FdMhUYQam87cFipFzOGJmXRctOF4i1Esk+ZFxatWqneX5dpxHlMBnaBTdI48dIVq6BbVUQNRNEAv6BW9Oc/Ou/PhfM5aV5x85gjNwfn6BRRVl8c=</latexit>

i1

<latexit sha1_base64="hmE35igVFTKPBdpDJAqfQkWp8VU=">AAACAnicbVDLSgNBEOz1GeMr6kXwshgET2FXJHoMePEY0TwgWcLsZDYZMo9lZlZclty8etV/8CZe/RF/wa9wkuzBJBY0FFXddHeFMaPaeN63s7K6tr6xWdgqbu/s7u2XDg6bWiYKkwaWTKp2iDRhVJCGoYaRdqwI4iEjrXB0M/Fbj0RpKsWDSWMScDQQNKIYGSvd057XK5W9ijeFu0z8nJQhR71X+un2JU44EQYzpHXH92ITZEgZihkZF7uJJjHCIzQgHUsF4kQH2fTUsXtmlb4bSWVLGHeq/p3IENc65aHt5MgM9aI3Ef/zOomJroOMijgxRODZoihhrpHu5G+3TxXBhqWWIKyovdXFQ6QQNjaduS1Y8piRJ2rScdGG4y9GsUyaFxW/WqneXZZrx3lMBTiBUzgHH66gBrdQhwZgGMALvMKb8+y8Ox/O56x1xclnjmAOztcvErmXxg==</latexit>

i0

<latexit sha1_base64="6g18HpgodCALMSK/MjetSz2YxGA=">AAACAnicbVDLSgNBEJz1GeMr6kXwMhgET2FXJHoMePEY0TwgWcLspDcZMrOzzMyKy5KbV6/6D97Eqz/iL/gVTpI9mMSChqKqm+6uIOZMG9f9dlZW19Y3Ngtbxe2d3b390sFhU8tEUWhQyaVqB0QDZxE0DDMc2rECIgIOrWB0M/Fbj6A0k9GDSWPwBRlELGSUGCvds57XK5XdijsFXiZeTsooR71X+un2JU0ERIZyonXHc2PjZ0QZRjmMi91EQ0zoiAygY2lEBGg/m546xmdW6eNQKluRwVP170RGhNapCGynIGaoF72J+J/XSUx47WcsihMDEZ0tChOOjcSTv3GfKaCGp5YQqpi9FdMhUYQam87cFipFzOGJmXRctOF4i1Esk+ZFxatWqneX5dpxHlMBnaBTdI48dIVq6BbVUQNRNEAv6BW9Oc/Ou/PhfM5aV5x85gjNwfn6BRRVl8c=</latexit>

i1

<latexit sha1_base64="JzsGKXpxgdsj3rrJvyrdq2DsYjU=">AAACAnicbVDLSgNBEJyNrxhfUS+Cl8EgeAq7QaLHgBePEc0DkiXMTibJkJnZZaZXXJbcvHrVf/AmXv0Rf8GvcJLswSQWNBRV3XR3BZHgBlz328mtrW9sbuW3Czu7e/sHxcOjpgljTVmDhiLU7YAYJrhiDeAgWDvSjMhAsFYwvpn6rUemDQ/VAyQR8yUZKj7glICV7nmv0iuW3LI7A14lXkZKKEO9V/zp9kMaS6aACmJMx3Mj8FOigVPBJoVubFhE6JgMWcdSRSQzfjo7dYLPrdLHg1DbUoBn6t+JlEhjEhnYTklgZJa9qfif14lhcO2nXEUxMEXniwaxwBDi6d+4zzWjIBJLCNXc3orpiGhCwaazsIWGMhLsiUMyKdhwvOUoVkmzUvaq5erdZal2ksWUR6foDF0gD12hGrpFddRAFA3RC3pFb86z8+58OJ/z1pyTzRyjBThfvxXxl8g=</latexit>

i2
<latexit sha1_base64="JzsGKXpxgdsj3rrJvyrdq2DsYjU=">AAACAnicbVDLSgNBEJyNrxhfUS+Cl8EgeAq7QaLHgBePEc0DkiXMTibJkJnZZaZXXJbcvHrVf/AmXv0Rf8GvcJLswSQWNBRV3XR3BZHgBlz328mtrW9sbuW3Czu7e/sHxcOjpgljTVmDhiLU7YAYJrhiDeAgWDvSjMhAsFYwvpn6rUemDQ/VAyQR8yUZKj7glICV7nmv0iuW3LI7A14lXkZKKEO9V/zp9kMaS6aACmJMx3Mj8FOigVPBJoVubFhE6JgMWcdSRSQzfjo7dYLPrdLHg1DbUoBn6t+JlEhjEhnYTklgZJa9qfif14lhcO2nXEUxMEXniwaxwBDi6d+4zzWjIBJLCNXc3orpiGhCwaazsIWGMhLsiUMyKdhwvOUoVkmzUvaq5erdZal2ksWUR6foDF0gD12hGrpFddRAFA3RC3pFb86z8+58OJ/z1pyTzRyjBThfvxXxl8g=</latexit>

i2

<latexit sha1_base64="CRuBp/3Y4A/H5lT766oSa+T7RhU=">AAACAnicbVDLSgNBEJyNrxhfUS+Cl8EgeAq7KtFjwIvHiOYByRJmJ7PJkNmZZaZXXEJuXr3qP3gTr/6Iv+BXOEn2YBILGoqqbrq7glhwA6777eRWVtfWN/Kbha3tnd294v5Bw6hEU1anSijdCohhgktWBw6CtWLNSBQI1gyGNxO/+ci04Uo+QBozPyJ9yUNOCVjpnncvusWSW3anwMvEy0gJZah1iz+dnqJJxCRQQYxpe24M/oho4FSwcaGTGBYTOiR91rZUkogZfzQ9dYxPrdLDodK2JOCp+ndiRCJj0iiwnRGBgVn0JuJ/XjuB8NofcRknwCSdLQoTgUHhyd+4xzWjIFJLCNXc3orpgGhCwaYzt4WqKBbsiUM6LthwvMUolknjvOxVypW7y1L1KIspj47RCTpDHrpCVXSLaqiOKOqjF/SK3pxn5935cD5nrTknmzlEc3C+fgEXjZfJ</latexit>

i3
<latexit sha1_base64="CRuBp/3Y4A/H5lT766oSa+T7RhU=">AAACAnicbVDLSgNBEJyNrxhfUS+Cl8EgeAq7KtFjwIvHiOYByRJmJ7PJkNmZZaZXXEJuXr3qP3gTr/6Iv+BXOEn2YBILGoqqbrq7glhwA6777eRWVtfWN/Kbha3tnd294v5Bw6hEU1anSijdCohhgktWBw6CtWLNSBQI1gyGNxO/+ci04Uo+QBozPyJ9yUNOCVjpnncvusWSW3anwMvEy0gJZah1iz+dnqJJxCRQQYxpe24M/oho4FSwcaGTGBYTOiR91rZUkogZfzQ9dYxPrdLDodK2JOCp+ndiRCJj0iiwnRGBgVn0JuJ/XjuB8NofcRknwCSdLQoTgUHhyd+4xzWjIFJLCNXc3orpgGhCwaYzt4WqKBbsiUM6LthwvMUolknjvOxVypW7y1L1KIspj47RCTpDHrpCVXSLaqiOKOqjF/SK3pxn5935cD5nrTknmzlEc3C+fgEXjZfJ</latexit>

i3

<latexit sha1_base64="WJtE4qYDXqXfWOMB0xL5NlKkBJg=">AAACAnicbVDLSgNBEJyNrxhfUS+Cl8EgeAq7EqLHgBePEc0DkiXMTmaTITM7y0yvGJbcvHrVf/AmXv0Rf8GvcJLswSQWNBRV3XR3BbHgBlz328mtrW9sbuW3Czu7e/sHxcOjplGJpqxBlVC6HRDDBI9YAzgI1o41IzIQrBWMbqZ+65Fpw1X0AOOY+ZIMIh5ySsBK97xX6RVLbtmdAa8SLyMllKHeK/50+4omkkVABTGm47kx+CnRwKlgk0I3MSwmdEQGrGNpRCQzfjo7dYLPrdLHodK2IsAz9e9ESqQxYxnYTklgaJa9qfif10kgvPZTHsUJsIjOF4WJwKDw9G/c55pREGNLCNXc3orpkGhCwaazsIUqGQv2xGE8KdhwvOUoVknzsuxVy9W7Sql2ksWUR6foDF0gD12hGrpFddRAFA3QC3pFb86z8+58OJ/z1pyTzRyjBThfvxkpl8o=</latexit>

i4
<latexit sha1_base64="WJtE4qYDXqXfWOMB0xL5NlKkBJg=">AAACAnicbVDLSgNBEJyNrxhfUS+Cl8EgeAq7EqLHgBePEc0DkiXMTmaTITM7y0yvGJbcvHrVf/AmXv0Rf8GvcJLswSQWNBRV3XR3BbHgBlz328mtrW9sbuW3Czu7e/sHxcOjplGJpqxBlVC6HRDDBI9YAzgI1o41IzIQrBWMbqZ+65Fpw1X0AOOY+ZIMIh5ySsBK97xX6RVLbtmdAa8SLyMllKHeK/50+4omkkVABTGm47kx+CnRwKlgk0I3MSwmdEQGrGNpRCQzfjo7dYLPrdLHodK2IsAz9e9ESqQxYxnYTklgaJa9qfif10kgvPZTHsUJsIjOF4WJwKDw9G/c55pREGNLCNXc3orpkGhCwaazsIUqGQv2xGE8KdhwvOUoVknzsuxVy9W7Sql2ksWUR6foDF0gD12hGrpFddRAFA3QC3pFb86z8+58OJ/z1pyTzRyjBThfvxkpl8o=</latexit>

i4

<latexit sha1_base64="sQATh8EdwpbxvJl0s30G5BtUnpQ=">AAACAnicbVDLSgNBEJyNrxhfUS+Cl8EgeAq7otFjwIvHiOYByRJmJ7PJkNmZZaZXXEJuXr3qP3gTr/6Iv+BXOEn2YBILGoqqbrq7glhwA6777eRWVtfWN/Kbha3tnd294v5Bw6hEU1anSijdCohhgktWBw6CtWLNSBQI1gyGNxO/+ci04Uo+QBozPyJ9yUNOCVjpnncvu8WSW3anwMvEy0gJZah1iz+dnqJJxCRQQYxpe24M/oho4FSwcaGTGBYTOiR91rZUkogZfzQ9dYxPrdLDodK2JOCp+ndiRCJj0iiwnRGBgVn0JuJ/XjuB8NofcRknwCSdLQoTgUHhyd+4xzWjIFJLCNXc3orpgGhCwaYzt4WqKBbsiUM6LthwvMUolknjvOxVypW7i1L1KIspj47RCTpDHrpCVXSLaqiOKOqjF/SK3pxn5935cD5nrTknmzlEc3C+fgEaxZfL</latexit>

i5
<latexit sha1_base64="sQATh8EdwpbxvJl0s30G5BtUnpQ=">AAACAnicbVDLSgNBEJyNrxhfUS+Cl8EgeAq7otFjwIvHiOYByRJmJ7PJkNmZZaZXXEJuXr3qP3gTr/6Iv+BXOEn2YBILGoqqbrq7glhwA6777eRWVtfWN/Kbha3tnd294v5Bw6hEU1anSijdCohhgktWBw6CtWLNSBQI1gyGNxO/+ci04Uo+QBozPyJ9yUNOCVjpnncvu8WSW3anwMvEy0gJZah1iz+dnqJJxCRQQYxpe24M/oho4FSwcaGTGBYTOiR91rZUkogZfzQ9dYxPrdLDodK2JOCp+ndiRCJj0iiwnRGBgVn0JuJ/XjuB8NofcRknwCSdLQoTgUHhyd+4xzWjIFJLCNXc3orpgGhCwaYzt4WqKBbsiUM6LthwvMUolknjvOxVypW7i1L1KIspj47RCTpDHrpCVXSLaqiOKOqjF/SK3pxn5935cD5nrTknmzlEc3C+fgEaxZfL</latexit>

i5

<latexit sha1_base64="pl5af+WkZ6m0OH3NIjWm038yr+Q=">AAACAnicbVDLSgNBEOz1GeMr6kXwMhgET2FXJHoMePEY0TwgWcLsZDYZMrOzzMyKy5KbV6/6D97Eqz/iL/gVTpI9mMSChqKqm+6uIOZMG9f9dlZW19Y3Ngtbxe2d3b390sFhU8tEEdogkkvVDrCmnEW0YZjhtB0rikXAaSsY3Uz81iNVmsnowaQx9QUeRCxkBBsr3bNetVcquxV3CrRMvJyUIUe9V/rp9iVJBI0M4VjrjufGxs+wMoxwOi52E01jTEZ4QDuWRlhQ7WfTU8fozCp9FEplKzJoqv6dyLDQOhWB7RTYDPWiNxH/8zqJCa/9jEVxYmhEZovChCMj0eRv1GeKEsNTSzBRzN6KyBArTIxNZ24LkSLm9ImZdFy04XiLUSyT5kXFq1aqd5fl2nEeUwFO4BTOwYMrqMEt1KEBBAbwAq/w5jw7786H8zlrXXHymSOYg/P1Cxxhl8w=</latexit>

i6
<latexit sha1_base64="k6JvCPEyNuH4i5iYhjJ6GlIg8rQ=">AAACBnicbVDLSsNAFJ3UV62vqhvBzWARXEhJRKrLQjcuK9gHtKFMppN26DzCzEQMIXu3bvUf3Ilbf8Nf8CuctlnY1gMXDufcy733BBGj2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1jhUkLSyZVN0CaMCpIy1DDSDdSBPGAkU4waUz9ziNRmkrxYJKI+ByNBA0pRsZKncYgpZdeNihX3Ko7A1wlXk4qIEdzUP7pDyWOOREGM6R1z3Mj46dIGYoZyUr9WJMI4QkakZ6lAnGi/XR2bgbPrTKEoVS2hIEz9e9EirjWCQ9sJ0dmrJe9qfif14tNeOunVESxIQLPF4Uxg0bC6e9wSBXBhiWWIKyovRXiMVIIG5vQwhYsecTIEzVJVrLheMtRrJL2VdWrVWv315X6SR5TEZyCM3ABPHAD6uAONEELYDABL+AVvDnPzrvz4XzOWwtOPnMMFuB8/QLwL5lW</latexit>

Ci,1

<latexit sha1_base64="rH5eKTCy9Wti/RGLaP/1ZLUzZc4=">AAACBnicbVDLSsNAFJ34rPVVdSO4GSyCCylJkeqy0I3LCvYBbSiT6aQdOo8wMxFDyN6tW/0Hd+LW3/AX/AqnbRa29cCFwzn3cu89QcSoNq777aytb2xubRd2irt7+weHpaPjtpaxwqSFJZOqGyBNGBWkZahhpBspgnjASCeYNKZ+55EoTaV4MElEfI5GgoYUI2OlTmOQ0qtqNiiV3Yo7A1wlXk7KIEdzUPrpDyWOOREGM6R1z3Mj46dIGYoZyYr9WJMI4QkakZ6lAnGi/XR2bgYvrDKEoVS2hIEz9e9EirjWCQ9sJ0dmrJe9qfif14tNeOunVESxIQLPF4Uxg0bC6e9wSBXBhiWWIKyovRXiMVIIG5vQwhYsecTIEzVJVrTheMtRrJJ2teLVKrX763L9NI+pAM7AObgEHrgBdXAHmqAFMJiAF/AK3pxn5935cD7nrWtOPnMCFuB8/QLxzJlX</latexit>

Ci,2

<latexit sha1_base64="MU5/ZKbnvsx0SIb4GmGEcMHQOMw=">AAACBnicbVDLSsNAFJ34rPVVdSO4GSyCCymJSnVZ6MZlBfuANpTJdNIOnUeYmYghZO/Wrf6DO3Hrb/gLfoXTNgvbeuDC4Zx7ufeeIGJUG9f9dlZW19Y3Ngtbxe2d3b390sFhS8tYYdLEkknVCZAmjArSNNQw0okUQTxgpB2M6xO//UiUplI8mCQiPkdDQUOKkbFSu95P6cVV1i+V3Yo7BVwmXk7KIEejX/rpDSSOOREGM6R113Mj46dIGYoZyYq9WJMI4TEakq6lAnGi/XR6bgbPrDKAoVS2hIFT9e9EirjWCQ9sJ0dmpBe9ifif141NeOunVESxIQLPFoUxg0bCye9wQBXBhiWWIKyovRXiEVIIG5vQ3BYsecTIEzVJVrTheItRLJPWZcWrVqr31+XacR5TAZyAU3AOPHADauAONEATYDAGL+AVvDnPzrvz4XzOWlecfOYIzMH5+gXzaZlY</latexit>

Ci,3

<latexit sha1_base64="Hr5rnLduWFV9iw44mC0R2pULtVs=">AAACBnicbVDLSsNAFJ34rPVVdSO4GSyCCymJlOqy0I3LCvYBbSiT6aQdOo8wMxFDyN6tW/0Hd+LW3/AX/AqnbRa29cCFwzn3cu89QcSoNq777aytb2xubRd2irt7+weHpaPjtpaxwqSFJZOqGyBNGBWkZahhpBspgnjASCeYNKZ+55EoTaV4MElEfI5GgoYUI2OlTmOQ0qtqNiiV3Yo7A1wlXk7KIEdzUPrpDyWOOREGM6R1z3Mj46dIGYoZyYr9WJMI4QkakZ6lAnGi/XR2bgYvrDKEoVS2hIEz9e9EirjWCQ9sJ0dmrJe9qfif14tNeOunVESxIQLPF4Uxg0bC6e9wSBXBhiWWIKyovRXiMVIIG5vQwhYsecTIEzVJVrTheMtRrJL2dcWrVWr31XL9NI+pAM7AObgEHrgBdXAHmqAFMJiAF/AK3pxn5935cD7nrWtOPnMCFuB8/QL1BplZ</latexit>

Ci,4

<latexit sha1_base64="2EBQg32nnanJ10b1gJnc2kcMSEU=">AAACBnicbVDLSsNAFJ34rPVVdSO4GSyCCymJaHVZ6MZlBfuANpTJdNIOnUeYmYghZO/Wrf6DO3Hrb/gLfoXTNgvbeuDC4Zx7ufeeIGJUG9f9dlZW19Y3Ngtbxe2d3b390sFhS8tYYdLEkknVCZAmjArSNNQw0okUQTxgpB2M6xO//UiUplI8mCQiPkdDQUOKkbFSu95P6cV11i+V3Yo7BVwmXk7KIEejX/rpDSSOOREGM6R113Mj46dIGYoZyYq9WJMI4TEakq6lAnGi/XR6bgbPrDKAoVS2hIFT9e9EirjWCQ9sJ0dmpBe9ifif141NeOunVESxIQLPFoUxg0bCye9wQBXBhiWWIKyovRXiEVIIG5vQ3BYsecTIEzVJVrTheItRLJPWZcWrVqr3V+XacR5TAZyAU3AOPHADauAONEATYDAGL+AVvDnPzrvz4XzOWlecfOYIzMH5+gX2o5la</latexit>

Ci,5

<latexit sha1_base64="qil+jUPoXB+DijjIKY8JJv0yw8I=">AAACBnicbVDLSsNAFJ3UV62vqhvBzWARXEhJRKrLQjcuK9gHtKFMppN26DzCzEQMIXu3bvUf3Ilbf8Nf8CuctlnY1gMXDufcy733BBGj2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1jhUkLSyZVN0CaMCpIy1DDSDdSBPGAkU4waUz9ziNRmkrxYJKI+ByNBA0pRsZKncYgpZe1bFCuuFV3BrhKvJxUQI7moPzTH0occyIMZkjrnudGxk+RMhQzkpX6sSYRwhM0Ij1LBeJE++ns3AyeW2UIQ6lsCQNn6t+JFHGtEx7YTo7MWC97U/E/rxeb8NZPqYhiQwSeLwpjBo2E09/hkCqCDUssQVhReyvEY6QQNjahhS1Y8oiRJ2qSrGTD8ZajWCXtq6pXq9buryv1kzymIjgFZ+ACeOAG1MEdaIIWwGACXsAreHOenXfnw/mctxacfOYYLMD5+gX4QJlb</latexit>

Ci,6

(b)

Fig. 1: In (a), it shows the counter values of counter i is an original accepting
computation of M ′, where ij is the value at turn j of the Turing tape. In (b),
we see the modified computation of M with each counter simulating in parallel.

simulation reaches the end of the worktape andM ′ enters an accepting state, for
all odd j, j < s, the counters in Ci,j and Ci,j+1 are decremented simultaneously
a nondeterministically guessed number of times to verify that they are the same
(and if j = s is is not changed thereby verifying that it is zero). Then M enters
a final state. Figure 1 demonstrates an example. This technique allows counters
to be adjusted in a different order. ⊓⊔

From Proposition 13 and decidability of boundedness for PBCM, we obtain:

Proposition 14. The boundedness, emptiness, and finitenesss problems for finite-
turn NTPBCM are decidable.

We believe that this is a new result for all three decision problems, and in
particular, decidability of boundedness is quite powerful.

3.4 Simple Matrix Grammars

Amatrix grammar has a finite set of matrix rules of the form [A1 → w1, . . . , Ak →
wk], where each Ai → wi is a context-free production. In the derivation, at each
step a matrix is chosen nondeterministically, whereby the context-free rules of
the matrix must be applied in order to the sentential form to produce the next
sentential form. An n-simple matrix grammar (n-SMG) (from [20]), a restricted
form of a matrix grammar, is a tuple G = (V1, . . . , Vn, Σ, P, S), where V1, . . . , Vn
are disjoint sets of nonterminals, Σ is the terminal alphabet, S is a start non-
terminal not in (V1 ∪ · · · ∪ Vn), and P is a finite set of rules of the form:

1. S → A1 · · ·An, where each Ai ∈ Vi,
2. [X1 → w1, . . . , Xn → wn], where Xi ∈ Vi and wi ∈ (Vi ∪ Σ)∗, and the

number of nonterminals in wi is equal to the number of nonterminals in wj

for all i ̸= j.

The derivation relation enforces that in each rule of type 2., always the leftmost
nonterminal of Vi in the sentential form is rewritten (precise definition of the
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derivation relation is in [20]). The language L(G) consists of all strings w ∈ Σ∗

that can be derived starting from S and applying the rules in such a leftmost
derivation. Note that a 1-SMG is just a context-free grammar. It is known [20]
that without either the restriction of the number of nonterminals being the same,
or not requiring leftmost derivation, grammars can generate more languages.

The following result follows from [20] and [15].

Proposition 15. L is generated by an n-SMG G if and only if there is an n-tape
NPDA M accepting L′ ⊆ ⟨Σ∗⟩n such that L = {x1 · · ·xn | (x1, . . . , xn) ∈ L′}.

We can generalize the definition of a simple matrix grammar by augmenting
it with monotonic counters. Then, in every matrix rule, each context-free pro-
duction includes 2k counter increments, and for a string to be generated, the
counter values in counter i and i+ 1 have to be equal, for i odd. Proposition 15
can be generalized to include counters.

Proposition 16. L is generated by an n-SMG with 2k monotonic counters G
if and only if there a an n-tape NPDA with 2k monotonic counters (which
is equivalent to an n-tape NPCM) M accepting L′ ⊆ ⟨Σ∗⟩n such that L =
{x1 · · ·xn | (x1, . . . , xn) ∈ L′}.

Using a proof similar to the decidability problems shown using other multi-
tape characterizations in this paper, we obtain:

Proposition 17. The emptiness, infiniteness, and boundedness problems for
simple matrix grammars (resp. with monotonic counters) are decidable, and they
are effectively semilinear.

4 Store Languages for the Boundedness Problem

To summarize, so far we have determined several new classes of machines for
which the boundedness problem is decidable. One of the largest is finite-turn
NTM with reversal-bounded counters and a pushdown where, in each accepting
computation, the pushdown can only be used within a single sweep of the Turing
worktape. In this section, we determine one more class that is even more general
than this one. The algorithm provides an entirely different technique than multi-
tape characterizations that we have used thus far.

We focus on finite-flip NPDA [17]. A t-flip (resp. finite-flip) NPCM augments
a t-flip NPDA with k-reversal-bounded counters. With this model, configura-
tions are of the form (q, w, Z0γ, i1, . . . , ik) where q is the current state, w is the
remaining input, Z0γ is the current pushdown contents, and ij is the current
contents of counter j.

In [19,23], the authors study the concept of a store language of a machine
M for arbitrary types of automata, which is essentially a language description
of all the store contents that can appear in any accepting computation of the
machine. So, for a t-flip NPCM M = (Q,Σ, δ, q0, F ), the store language of M ,

S(M) = {qZ0γc
i1
1 · · · cikk | (q0, w, Z0, 0, . . . , 0) ⊢∗

M (q, w′, Z0γ, i1, . . . , ik) ⊢∗
M

(qf , λ, Z0γ
′, i′1, . . . , i

′
k),

qf ∈ F,w,w′ ∈ Σ∗, γ′ ∈ Γ ∗, i′1, . . . , i
′
k ≥ 0},
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where c1, . . . , ck are new special symbols associated with the counters. In [23],
the authors showed that the store language of every t-flip NPDA (resp. t-flip
NPCM) is in fact a regular (resp. NCM) language. Therefore, the pushdown can
be essentially eliminated. This is a generalization of the important result that
the store language of any NPDA is regular [11].

The next proof uses an inductive procedure (informally described without
counters) where we know 0-flip NPDAs (equal to the context-free languages)
have a boundedness problem. And inductively, if we have an r + 1-flip NPDA,
we can create two machines, an r-flip machine that accepts the parts of the
inputs of M read during the first r flips that eventually leads to acceptance,
and a 0-flip machine that accepts the parts of the inputs of M from which, with
no flips, it will eventually accept. These two languages use the store languages,
which can be accepted by finite automata. The purpose of the store languages
should be noted. Simply using the fact that r + 1-flip NPDA are closed under
gsm mappings, it is immediately evident that both of these languages can be
accepted by r + 1-flip NPDA (just using closure properties). But, by using the
store language, it is possible to accept the first with only an r-flip NPDA and
the second with a 0-flip NPDA. This is needed to make the induction work, so
that essentially we can decide boundedness up to any given r.

Proposition 18. The boundedness, emptiness, and infiniteness problems are
decidable for finite-flip NPDA (resp. finite-flip NPCM).

Lastly, we consider machines with a finite-flip pushdown, reversal-bounded
counters, and a finite-turn worktape. Such a machine is pd-restricted if, in every
accepting computation, the finite-flip pushdown can only be used in one left-to-
right sweep or right-to-left sweep of the worktape. Finally, by Proposition 11:

Corollary 19. The class of pd-restricted finite-flip NPCM augmented with a
finite-turn worktape has a decidable boundedness, emptiness, and infiniteness
problem.

5 Conclusions

In this paper, we study powerful one-way nondeterministic machine models, and
find new models where the boundedness, emptiness, and infiniteness problems
are decidable. The largest of these are finite-turn Turing machines augmented
by partially blind counters, and finite-turn Turing machines augmented by a
pushdown that can be flipped a finite number of times, and reversal-bounded
counters, where the pushdown can only be used in one sweep of the Turing
worktape. It also shows two new techniques to show these problems are decidable.
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Appendix

Definitions

For t ≥ 1, a one-way t-tape nondeterministic finite automaton (t-tape NFA) is a
tuple M = (Q,Σ, δ, q0, F ) where Q is a finite set of states, Σ is the finite input
alphabet, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and δ is a
partial function from Q × (Σ ∪ {λ}) × {i | 1 ≤ i ≤ t} (for 1-tape machines, we
unambiguously leave off the last component) to finite subsets of Q. We usually
denote an element q′ ∈ δ(q, a, i) by δ(q, a, i) → q′. A configuration ofM is a tuple
(q, (w1, . . . , wt)) where q ∈ Q is the current state, and (w1, . . . , wt), w1, . . . , wt ∈
Σ∗ is the remainder of the t-tape input. Two configurations change as follows:

(q, (w1, . . . , wi−1, awi, wi+1, . . . , wt)) ⊢ (q′, (w1, . . . , wt)),

if there is a transition δ(q, a, i) → q′. We let ⊢∗ be the reflexive and transitive
closure of ⊢. An accepting computation on (w1, . . . , wt) ∈ ⟨Σ∗⟩t is a sequence

(q0, (w1, . . . , wt)) ⊢ · · · ⊢ (qn, (λ, . . . , λ)), (1)

where qn ∈ F . The language accepted by M , L(M) ⊆ ⟨Σ∗⟩t is the set of all
(w1, . . . , wt) for which there is an accepting computation.

A t-tape k-counter machine is a tupleM = (Q,Σ, δ, q0, F ), where Q,Σ, q0, F
are just like t-tape NFA, and δ has transitions δ(q, a, i, s, j) → (q′, x) where
q, q′ ∈ Q, a ∈ Σ ∪ {λ}, 1 ≤ i ≤ t, s ∈ {0, 1}, x ∈ {−1, 0, 1}, 1 ≤ j ≤ k. A
configuration is a tuple (q, (w1, . . . , wt), (z1, . . . , zk)) where q ∈ Q is the current
state, (w1, . . . , wt) is the remaining contents of the input tapes, and (z1, . . . , zk)
are the contents of the counters, where zi ∈ N0, for each i. Configurations change
by

(q, (w1, . . . , wi−1, awi, wi+1, . . . , wt), (z1, . . . , zk)) ⊢α

(q′, (w1, . . . , wt), (z1, . . . , zj−1, zj + x, zj+1, . . . , zk)),

if α is δ(q, a, i, s, j) → (q′, x), s is 0 if zj = 0, and s is 1 if zj is positive. As such,
s is known as the counter status as it is used to check if a counter is empty or
not. A k-counter machine M is r-reversal-bounded (resp. reversal-bounded) if
in each accepting computation, the number of changes between non-decreasing
and non-increasing (or vice versa) on each counter is at most r (resp. a finite
number). A k-counter machine is partially-blind if δ(q, a, i, 0, j) = δ(q, a, i, 1, j)
for each q ∈ Q, a ∈ Σ ∪ {λ}, 1 ≤ i ≤ t, 1 ≤ j ≤ k. For this reason, typically the
counter status component is left off the transitions.

We also examine one-way machines with a two-way (Turing) read/write work-
tape denoted by NTM. These machines (for this model, we only use 1-tape
inputs) have the same components as 1-tape NFA, but also have a worktape al-
phabet Γ , (including a fixed blank character ␣), and δ is from Q× (Σ∪{λ})×Γ
to subsets of Q×Γ ×{L,S,R}. Each transition δ(q, a, y) → (q′, z, x) consists of,
the current state q ∈ Q, the state to switch to q′ ∈ Q, the input a ∈ Σ∪{λ}, the
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symbol currently being scanned on the worktape y ∈ Γ , the symbol to replace
it with z ∈ Γ , and the direction x (left, stay, or right) moved by the read/write
head.

An NTM (resp. NPDA) M is l-turn if, in every accepting computation, the
worktape makes at most l changes in direction, between moving towards the
right and moving towards the left, and vice versa. A machine is finite-turn if it
is l-turn for some l.

Let M be a t-turn NTM (resp. t-turn NTCM), where t ≥ 0. We say M is in
normal form if: M makes exactly t turns on all inputs accepted; the read/write
worktape head always moves left or right at every step that uses the worktape
(no stay transitions); on every accepting computation, there is a worktape cell
d, and M only turns left on cell d and right on cell 1 (the cell it starts on); the
worktape never moves left of cell 1 or right of cell d; and M accepts only in cell
1 or d.

Normal Form Lemma. Let t ≥ 0. Given a t-turn NTM (resp. t-turn NTCM)
M , we can construct a t-turn NTM (resp. t-turn NTCM)M ′ in normal form such
that L(M ′) = L(M).

Proof. First, we assume without loss of generality that M starts by moving
towards the right (if it does not, then another machine can be built which uses
the worktape in the opposite direction).

Next, we introduce three new worktape symbols: ▷,#, and ◁ (plus a marker
that can be added to any letter). M ′ starts by writing ▷ on the first cell.
Throughout, if M has counters, then transitions that use them are simulated
verbatim. Then M ′ simulates M before the first turn, whereby at each step,
M ′ can either simulate a transition verbatim that moves right. It can simulate
a sequence of stay transitions before moving right as follows: if the symbol on
the worktape cell is x, it guesses the final contents of the cell before eventually
moving right, y, and replaces x with y, but by immediately moving right. It
then simulates the sequence of stay transitions appropriately from x to y but
using the state to store the current simulated symbol and by moving right on
# on each step, ultimately verifying that the simulated sequence of stay tran-
sitions ends with y. Also, at each step, instead of simulating a transition of M ,
it can instead nondeterministically write any number of # symbols and move
right on the store (reading λ on the input). At some point, M ′ writes a ◁ on
the worktape (this is the guessed rightmost cell d to be visited during the entire
computation). Next, it continues the simulation but only towards the left by
only simulating transitions that move left verbatim (only on a non-# symbol
from the worktape), or that stay on the worktape in a similar fashion as above
starting on x, guessing the final contents y, replacing x with y, then simulating
the sequence appropriately using the state, by moving left on # at each step.
It can also skip over arbitrarily many # symbols on λ input. If it simulates a
turn transition, it instead marks the current cell, moves left to ▷ and back to
the marked cell, where it unmarks it and continues the simulation. If t ≥ 2, it
again switches direction and continues this same simulation towards the right in
a similar fashion, and so on. M ′ remembers how many turns have occurred in
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the finite control to make sure it turns exactly t times. Lastly, if M ′ hits a final
state of M , it remembers this in the finite control and continues making a full
t+ 1 sweeps of the worktape whence it enters a final state of M ′.

Altogether, M ′ can shuffle in arbitrarily many # symbols into the worktape,
it writes ▷ on the first cell, ◁ on some cell d (nondeterministically guessed so
that M would not move to the right of that cell on any turn), it only turns
at those two designated cells, and always turns at those two cells, there are
no stay transitions, and it accepts only on either ▷ or ◁. It is evident that
L(M ′) = L(M) and M ′ is in normal form. ⊓⊔

Also, given such a machineM in normal form, we can have the machine write
the current state in the first and last cell (1 and d) every time it reaches them.
We call this state normal form.

Lemma 2. Let t ≥ 0, and let M be a t-turn NTM (resp. t-turn NTCM). We can
construct a (t + 1)-tape NFA (resp. (t + 1)-tape NCM) M ′ such that L(M ′)A =
L(M).

Proof. We will only describe the case when k is odd, with the even case being
similar.

Assume without loss of generality by the previous lemma that M is in state
normal form. We construct M ′ which accepts input (w1, . . . , wt+1) if and only if
w1w

R
2 · · ·wtw

R
t+1 ∈ L(M), as follows:

On input (w1, . . . , wt+1), M
′ guesses a (t+ 1)-track string x ∈ ∆∗ letter-by-

letter (here, x does not need to be stored as it is guessed one letter at a time
from left-to-right), and simulates the computation of M on the t+1 input tapes
by making sure that the computation of M is “compatible” with the guessed
string x while checking that x ∈ H(M). To do this, M ′ verifies that on input
w1, M could read w1 before the first turn and finish its first sweep with h1(x)
on its tape, on input xR2 and starting with state and tape contents of h1(x), M
could finish its second sweep with h2(x) on its tape, etc. Furthermore, on the
guessed x, it will be possible to verify in parallel that, for each i, 1 ≤ i ≤ t,
hi(x) produced hi+1(x) while reading wi if i is odd, or wR

i if i is even. Also, it
is possible to do so from left-to-right when guessing x, even when i is even. We
will describe the even case which is slightly more complicated. The simulation
using the even tracks are done in reverse by “flipping the directions”. It only
needs to simulate transitions that move left. To simulate δ(q, a, y) → (p, z,L) on
track i, M ′ switches the simulation of track i from p to q while reading a from
tape i, and verifying that the (t + 1)-track string x has y in the current letter
of track i − 1 (or ␣ if i = 1), and z in the current letter of track i. If M has
monotonic counters, then M ′ simulates them verbatim, as applying transitions
in a different order preserves their total. ⊓⊔

Lemma 3. Let t ≥ 0, and let M be a (t + 1)-tape NFA (resp. (t + 1)-tape
NCM). Then we can construct a t-turn NTM (resp. t-turn NTCM) M ′ such that
L(M ′) = L(M)A.
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Proof. We will describe the case when t is odd, with the even case being similar.
First consider the case without counters.

Each transition of the (t + 1)-tape NFA is of the form δ(q, a, i) → p, where
q, p are states, a ∈ Σ∪{λ} and 1 ≤ i ≤ t+1. Let T be a set of labels in bijective
correspondence with the transitions of M .

On input w = w1w
R
2 · · ·wtw

R
t+1 (note that the wi’s need not have the same

lengths and can even be the empty word since some transitions are on λ input),
M ′ operates as follows:

1. M ′ uses the worktape to guess a sequence of transition labels of M . So M ′

writes α0α1 · · ·αn (each αi ∈ T ), where it verifies that α0 is a transition from
an initial state of M , αn is a transition into a final state, and the ending
state of αi is the starting state of αi+1 for all i, 0 ≤ i < n. In parallel, M ′

reads input w1 and verifies that the letters of Σ ∪ {λ} on input tape 1 that
are read by the transition sequence α0 · · ·αn are w1.

2. M ′ turns on the worktape and reads input wR
2 and makes sure the letters

read by αn · · ·α0 on tape 2 are wR
2 .

3. M turns on the worktape and reads w3 and makes sure the letters read by
α0 · · ·αn on tape 3 are w3.

...
until tape t+ 1.

Because the transition sequence α0 · · ·αn is fixed after step 1, M ′ can verify
that (w1, . . . , wt+1) could be read by α0 · · ·αn by making a turn on the store
after reading each wi.

IfM has counters, then the guessed sequence of transition labels remains the
same, and all counter changes can be applied when guessing it. ⊓⊔

Proposition 9. Let t ≥ 0. There is a (t + 1)-tape NPCM M if and only if
there is an i-restricted t-turn NTPCM M ′ such that L(M ′) = L(M)A, for any
0 ≤ i ≤ t.

Proof. The construction from i-restricted t-turn NTPCM to (i-restricted) (t+1)-
tape NPCM is similar to the proof of Lemma 2 noting that since the pushdown
in the t-turn NTPCM is only used between two consecutive turns (or the start or
end of the computation) of the worktape head, the simulation of the pushdown is
only done on a single track of the (t+1)-track guessed string when reading that
one input tape. (Note that the simulation of the pushdown is done in reverse if
i is odd).

For the reverse construction, by Lemma 8, given a (t + 1)-tape NPCM, we
can convert to an equivalent i-restricted (t+ 1)-tape NPCM. To convert that to
an i-restricted t-turn NTPCM (0 ≤ i ≤ t) is similar to the one in the proof of
Lemma 3 where it only verified that the pushdown changes properly according
to the guessed transition sequence by simulating the pushdown only between the
ith and i+ 1st turns of the Turing tape (or the start or the end). ⊓⊔

Proposition 12. The emptiness (boundedness, infiniteness) problems are un-
decidable for the following models:
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1. 1-turn NTM (or DCSA) with a 1-turn pushdown.
2. 2-turn DCSA with a 1-turn pushdown, even when the pushdown is used only

during the checking stack reading phase (i.e., after turn 1).
3. 1-turn NTM with an unrestricted counter.
4. 1-turn deterministic pushdown automata with an unrestricted counter.

Proof. It was pointed out in the introduction that undecidability of emptiness
implies undecidability of boundedness. Similarly, given M , L(M)Σ∗ is infinite if
and only if L(M) ̸= ∅, and hence undecidability of emptiness implies undecid-
ability of infiniteness.

The first item above follows from the undecidability of emptiness of the
intersection of languages accepted by 1-turn DPDA (deterministic NPDA) [2].

For the second item, we will use the undecidability of the halting problem for
single-tape DTM on an initially blank tape. Let Z be a single-tape DTM. Define
the following language:

L = {I1#I3 · · ·#I2k−1$I
R
2k# · · ·#IR4 #IR2 | I1 ⇒ · · · ⇒ I2k−1 ⇒ I2k is a

halting computation of Z}.
Construct a 2-turn DCSA with a 1-turn pushdown M as follows when given

an input of the form w = I1#I3 · · ·#I2k−1$I
R
2k# · · ·#IR4 #IR2 :

1. M ′ writes I1#I3 · · ·#I2k−1 on the checking stack.
2. M ′ turns on the checking stack, and while reading input IR2k# · · ·#IR4 #IR2

does the following in parallel:
– It checks that I1 ⇒ I2, I3 ⇒ I4, . . . , I2k−1 ⇒ I2k.
– It pushes IR2k# · · ·#IR4 #IR2 on the pushdown.

3. M ′ then makes a second turn on the checking stack and checks (by popping
the pushdown and scanning the checking stack) that I2 ⇒ I3, . . . , I2k−2 ⇒
I2k−1.

M makes only 2 turns on the checking stack and 1-turn on the pushdown, and
L(M) is empty if and only if Z does not halt.

For the third point, we show that it is undecidable whether a machine of
this type accepts λ. The proof of the undecidability of the halting problem
for 2-counter machine with counters C1 and C2 (with no input tape) in [24]
shows that the counters operate in phases. A phase begins with one counter,
say C1, having value di and the other counter, C2, having value 0. During the
phase, C1 decreases while C2 increases. The phase ends with C1 having value
0 and C2 having value ei. Then in the next phase the modes of the counters
are interchanged: C2 decreases to zero while C1 increases to di+1. At the start,
d1 = 1. Thus, a halting computation of M (if it halts) will be of the form:

(q1, d1, 0) ⇒∗ (q2, 0, e1) ⇒∗ (q3, d2, 0) ⇒∗ (q4, 0, e2) ⇒∗ · · · ⇒∗ (q2k, 0, ek)

where q1, . . . , q2k are states and d1, e1, d2, e2, ..., d2k, e2k are positive integers with
d1 = 1 and the shown configurations are the ends of the phases. Note that the
second component of the configuration refers to the value of C1, while the third
component refers to the value of C2. We assume that if M halts, it halts with
zero in counter C1.
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We construct a 1-turn NTM M ′ with an unrestricted counter D to simulate
the 2-counter machine M on λ input as follows:

1. M ′ writes z = adk#bdk# · · ·#ad3#bd3#ad2#bd2#ad1#bd1 on its read/write
tape, where d1 = 1 and k, dk, . . . , d3, d2 are nondeterministically chosen pos-
itive integers. Clearly, M ′ can do this without reversing on the read/write
tape with the help of D; When M ′ writes adi , it simultaneously increments
D by di, and then it decrements D to zero while writing #bdi .

2. M ′ then reverses its read/write head and simulatesM . In the simulation, the
1-turn read/write tape will keep track of the changes in counter C1 and D
will simulate C2. The simulation is done as follows: Suppose counter C1 has
value di represented by adi and the read/write head is on # to the left of bdi ,
and counter C2 is zero. M ′ moves the read/write head left to # simulating
M and incrementing D to ei. This simulates the phase where C1 which has
value di is decremented to zero while C2 is incremented to ei. In the next
phase, M ′ simulating M decrements D to zero while moving the read/write
head left of bdi+1 to the next # checking that di+1 is valid. At this point, D
is zero, and counter C1 has value represented by adi+1 . The process is then
repeated.

Clearly, M ′ accepts λ if and only if M halts, which is undecidable.
Given a 1-turn NPDA M with an unrestricted counter operating on λ input,

let T = {t1, . . . , tk} be its set of transitions. Construct a 1-turn DPDA M ′ with
an unrestricted counter with inputs in T+ which operates as follows when given
input w = a1 · · · an in T+: M ′ checks that the transition a1 is applicable to the
initial condition, i.e., the state is q0, the stack symbol Z0, and counter 0. Then
M ′ tries to simulate M guided by the transitions in w. M ′ accepts w if and only
if the sequence of transitions w leads to M to accept λ. It follows that L(M ′) is
not empty if and only if M accepts λ. The result follows from the third point of
this proposition.

⊓⊔

Proposition 16. L is generated by an n-SMG with 2k monotonic counters G
if and only if there a an n-tape NPDA with 2k monotonic counters (which
is equivalent to an n-tape NPCM) M accepting L′ ⊆ ⟨Σ∗⟩n such that L =
{x1 · · ·xn | (x1, . . . , xn) ∈ L′}.

Proof. Suppose L′ is accepted by an n-tape NPDA M with input alphabet Σ
and 2k monotonic counters C1, D1, . . . , Ck, Dk. Let a1, b1, . . . , ak, bk be new
symbols. We construct an n-tape NPDA M ′ with input alphabet ∆ = Σ ∪
{a1, b1, . . . , ak, bk}. M ′ when given an input w ∈ ∆∗, simulates M on w but in
a move, instead of incrementing Cr (Dr) by a non-negative integer ir (jr), M

′

reads airr (bjrr ) on input tape 1. By Proposition 15, since M ′ is a n-tape NPDA,
we can construct an n-SMG G′ generating L(M ′). Next, we construct an n-SMG
with 2k monotonic counters G from G′ as follows: If in a rule R′ of G′, the symbol
ar (br) appears ir (jr) times, we create a rule R of G by deleting these symbols
and adding ir (jr) as increment to counter Cr (Dr). Clearly, L(G) = {x1 · · ·xn |
(x1, . . . , xn) ∈ L}.
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The converse is proved by reversing the construction above: Given an n-SMG
with 2k monotonic counters G, we construct an n-SMG G′ with 2k new terminal
symbols to simulate the increments ir (jr) to counter Cr (Dr) by generating airr
(bjrr ) on the first components of the rules. From G′ we then construct an n-
tape NPDA M ′. Finally from M , we construct a n-tape NPDA with monotonic
counters M . ⊓⊔

Proposition 17. The emptiness, infiniteness, and boundedness problems for
simple matrix grammars (resp. with monotonic counters) are decidable, and they
are effectively semilinear.

Proof. Given an n-SMG with 2k monotonic counters, we construct an n-tape
NPDAM with monotonic counters (which is equivalent to a n-tape NPCM) such
that L(G) = {x1 · · ·xn | (x1, . . . , xn) ∈ L(M)}. Let Li = {xi | (x1, . . . , xn) ∈
L(M)}. We construct for each i, an NPCM Mi accepting L(Mi). Then L(G)
is non-empty (resp. finite, bounded) if and only if each L(Mi) is non-empty
(resp. finite, bounded). The result follows since these problems are decidable for
NPCM. Semilinearity is also clear. ⊓⊔

Proposition 18. The boundedness, emptiness, and infiniteness problems are
decidable for finite-flip NPDA (resp. finite-flip NPCM).

Proof. It suffices to prove it with counters. We will prove by induction on t ≥ 0,
that every t-flip NPCM has a decidable boundedness problem. The base case
when t = 0 is true because every 0-flip NPCM is in fact a normal NPCM which
has a decidable boundedness problem [3].

Let r ≥ 0, assume that every r-flip NPCM has a decidable boundedness
problem, and let M = (Q,Σ, δ, q0, F ) be a (r + 1)-flip NPCM. Assume without
loss of generality that every flip transition of M is on λ, and that every flip
transition that can be used for the ith flip is from states in Pi to P

′
i where these

states are not used for any other transitions that do not involve the ith flip.
Also assume that each state implies the topmost symbol of the stack (i.e. each
transition guesses the topmost stack symbol, and then in the next step verifies
that it guessed correctly). Lastly, assume without loss of generality that in every
accepting computation, M makes exactly r + 1 flips. Then L(M) equals

{wv | (q0, w, Z0, 0, . . . , 0) ⊢∗ (q1, λ, Z0γ, i1, . . . , ik) with r flips, q1 ∈ Pr+1,
(q1, λ, Z0γ, i1, . . . , ik) ⊢ (q2, λ, Z0γ

R, i1, . . . , ik) with one flip, q2 ∈ P ′
r+1

and (q2, v, Z0γ
R, i1, . . . , ik) ⊢∗ (q3, λ, γ

′, i′1, . . . , i
′
k) with no flips, q3 ∈ F}

Let X be the set of all pairs (w, v) in L(M) above.
Consider S1 = S(M) ∩ Pr+1Γ

∗c∗1 · · · c∗k and S2 = S(M) ∩ P ′
r+1Γ

∗c∗1 · · · c∗k.
Because the store language of every finite-flip NPCM is an NCM language [23]
and NCM is closed under intersection with regular languages, S1 an S2 are in
NCM. Because also NCM is closed under reversal, we can build an NCM M1

that accepts the reversal of S1, and M2 can be built that accepts S2 (not the
reversal). Let k1, k2 be the number of counters in M1 and M2 respectively.



Containment Problem for Deterministic Multicounter Machine Models 23

Let L1 equal to

= {w | ∃v, (w, v) ∈ X}
= {w | ∃q1, q2 ∈ Q, q3 ∈ F, γ, γ′ ∈ Γ ∗, v ∈ Σ∗, ij , i

′
j ≥ 0 for 1 ≤ j ≤ k such that

(q0, w, Z0, 0, . . . , 0) ⊢∗ (q1, λ, Z0γ, i1, . . . , ik) with r flips, q1 ∈ Pr+1,
(q1, λ, Z0γ, i1, . . . , ik) ⊢ (q2, λ, Z0γ

R, i1, . . . , ik) with one flip, q2 ∈ P ′
r+1

and (q2, v, Z0γ
R, i1, . . . , ik) ⊢∗ (q3, λ, Z0γ

′, i′1, . . . , i
′
k) with no flips}

= {w | (q0, w, Z0, 0, . . . , 0) ⊢∗ (q1, λ, Z0γ, i1, . . . , ik) with r flips,

and q1Z0γc
i1
1 · · · cikk ∈ S1}.

This is a r-flip language because a r-flip NPCM with k+k1 counters can be built
that simulates M until an arbitrarily guessed state q ∈ Q1 (using the first k
counters), where, if it has Z0γ on the pushdown and i1, . . . , ik in the counters, it
simulates M1 (on the other k1 counters) on (qZ0γc

i1
1 · · · cikk )R by reducing each

counter to zero from counter k to counter 1, then popping from the pushdown
until it is empty.

Let L2 equal to

= {v | ∃w, (w, v) ∈ X}
= {v | ∃q1, q2 ∈ Q, q3 ∈ F, γ, γ′ ∈ Γ ∗, w ∈ Σ∗, ij , i

′
j ≥ 0 for 1 ≤ j ≤ k such that

(q0, w, Z0, 0, . . . , 0) ⊢∗ (q1, λ, Z0γ, i1, . . . , ik) with r flips, q1 ∈ Pr+1,
(q1, λ, Z0γ, i1, . . . , ik) ⊢ (q2, λ, Z0γ

R, i1, . . . , ik) with one flip, q2 ∈ P ′
r+1

and (q2, v, Z0γ
R, i1, . . . , ik) ⊢∗ (q3, λ, Z0γ

′, i′1, . . . , i
′
k) with no flips}

= {v | (q2, v, Z0γ, i1 . . . , ik) ⊢∗ (q3, λ, Z0γ
′, i1, . . . , i

′
k) with 0 flips, q3 ∈ F,

i′1, . . . , i
′
k ≥ 0, and q2Z0γc

i1
1 · · · γcikk ∈ S2}.

This is a NPCM language (no flips) as a machine with k + k2 counters can be
built which simulates M2 by guessing and checking that q0Z0γc

i1
1 · · · cikk ∈ S2,

while pushing Z0γ onto the pushdown and adding ij to each counter j. Then it
uses the other k counters to simulate M from q without any flips.

Claim. L is bounded (resp. non-empty, finite) if and only if L1 and L2 are both
bounded (resp. non-empty, finite).

Proof. Assume L is bounded. Then there exists w1, . . . , wn such that L ⊆
w∗

1 · · ·w∗
n. But L1 and L2 are both subsets of subwords of L and so they are

bounded (the set of subwords of a bounded language is bounded, and any subset
of a bounded language is bounded [9]).

Assume L1 and L2 are bounded. Hence, there exists w1, . . . , wn, v1, . . . , vm
such that L1 ⊆ w∗

1 · · ·w∗
n and L2 ⊆ v∗1 · · · v∗m. It is immediate that L ⊆ L1L2

because L = {xy | (x, y) ∈ X}. Hence, L ⊆ w∗
1 · · ·w∗

nv
∗
1 · · · v∗m. ⊓⊔

As we have an algorithm that checks if a (0-flip) NPCM is bounded [3], the
proof above creates an algorithm to check if a 1-flip NPDA is bounded. This
provides an inductive algorithm that works up to an arbitrary number of flips.

⊓⊔
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