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Abstract Granular materials such as sand, powders, and food grains are ubiquitous in civil

engineering, geoscience, agriculture, and medicine. While the influence of friction between the

grains on the static structure of these systems is well understood, its impact on the dynamics is

an open problem. Here we use particle-based simulations of a granular pack under cyclic shear

and discover that the relaxation time of the system is a non-monotonic function of friction. By

introducing the concept of dynamic constraints, we reveal that this re-entrant dynamics is due

to the competition between increasing frictional coupling and a concurrent change in the struc-

ture of the granular pack. Our theoretical approach, which unifies the dynamics of friction-less

systems with frictional ones, is applicable to other systems that have a complex free energy

landscape and a dynamics which involves time-dependent constraints, thus setting the stage for

a description of the dynamic behavior of a large class of complex systems.

Due to the importance of granular materials for our daily life, they have been in the fo-

cus of interest of a multitude of studies [1–5]. Critical insight into their static properties has

come from various approaches, including Maxwell’s method which connects mechanical con-

straints with the rigidity of a structure [6–10], force chain networks [11–14], as well as the

Edwards ensemble [15–18], which allows a statistical mechanics description of the structure.

Despite these successes, our understanding of the microscopic dynamics of granular packs,

which features limit cycles, caging, convection, and a strong dependence on the history and

driving protocol [19–27], remains unsatisfactory [28]. This lack of insight is in contrast to the

case of thermal glass-formers, which have a structure similar to the one of granular systems but

whose relaxation dynamics is described reasonably well by multiple approaches [29–32]. One

reason for this striking difference is that particle friction renders granular systems dynamically

constrained and dissipative [19, 33–35], hence requiring non-equilibrium approaches [2].

Theoretical studies of model glass-formers have revealed that dynamical slowing down can

be caused by the presence of constraints [36–38]. These findings and the fact that the rigidity

of granular systems can be explained by constraint counting [39–41] hint that this approach can

be generalized to describe the dynamics of driven granular materials. Here we probe this dy-

namics and demonstrate that dynamic constraints indeed allow to rationalize it. We argue that

this approach is quite general and hence can be applied to a multitude of disordered many-body
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systems [42–45].

System: We investigate a 2:1 mixture of 2D frictional Hertzian particles having a diam-

eter 𝑑𝑠 = 1 cm (our unit of length) and 𝑑𝑏 = 1.4 cm, and a density 𝜌 = 1g · cm−2. The

tangential component of the force, F𝑡 , is restricted by the Coulomb cone |F𝑡 | ≤ 𝜇 |F𝑛 |, where

𝜇 is the friction coefficient and F𝑛 is the normal force at the contact. Details of the model

and the simulations are given in the Methods. The total number of particles is 𝑁 = 104, and

they undergo cyclic shear at constant pressure with a strain amplitude of 0.05 in a box of size

120 cm × 120 cm consisting of four rigid walls made of particles, see Inset of Fig. 1b. In the

following, time will be given in number of shear cycles.

Re-entrant dynamics: Figure 1 shows the time dependence of the translational and rota-

tional mean squared displacements, TMSD and RMSD, respectively. The TMSD demonstrates

that at small 𝜇 the dynamics has a fast, diffusion-like behavior while an increase of 𝜇 to 0.014

leads to a motion in which the particles are temporarily caged before they finally start to dif-

fuse. For somewhat larger frictions the TMSD is small and basically constant, i.e., the particles

are completely caged. This 𝜇−dependence is thus reminiscent of the slowing down of thermal

glass-forming systems if the temperature is lowered [29], except that here it is the frictional

coupling between the particles that is the control parameter. Surprisingly one finds that if fric-

tion is increased beyond 𝜇 ≈ 0.2, the dynamics speeds up again and at the highest 𝜇 the TMSD

becomes hyperdiffusive. This re-entrant phenomenon, which is in qualitative agreement with

the results of Ref. [23] for a 3D system, hints that the relaxation dynamics is controlled by two

competing processes that depend on 𝜇 and the nature of which will be elucidated below.

The RMSD shows that at very small 𝜇 the rotational motion of the particles is slow and

ballistic, i.e., increases quadratically with time, a result that is reasonable since the low friction

and the slow shearing makes it hard for a particle to change its angular velocity. With growing

𝜇 the RMSD at short times increases quickly and its slope in this double logarithmic represen-

tation decreases to 1, indicating a rotational diffusive dynamics. For 𝜇 larger than ≈ 2 ·10−3 this

dynamics slows down again while its time-dependence turns back to ballistic. Finally, when 𝜇

is larger than ≈ 0.2, the rotational movement speeds up again and becomes diffusive. Hence we

conclude that also the rotational degrees of freedom show a re-entrant behavior as a function of
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friction.

Since the time dependence of the MSDs does not show for all 𝜇 a diffusive behavior, the

diffusion constant cannot be used to quantify the dynamics. To this aim we therefore monitor

MSD(𝑡 = 1) as well as the long-time slope of the MSD in a double-logarithmic plot. Figure 2(a)

shows that for 𝜇 ≲ 2 ·10−3 the TMSD has a slope of 1.0 and then drops quickly to a value that is

basically zero, i.e., the dynamics changes from diffusive to caged. This caging regime extends

from around 𝜇min = 2 · 10−2 to 𝜇max = 0.2 and will be referred to as “glass-zone” since the

TDOF are completely frozen. For 𝜇 > 𝜇max the slope shoots back up to 1.0 and remains

constant. The exponent for the RMSD decreases from 2.0 at 𝜇 = 0 (ballistic motion) to a value

slightly above 1 at 𝜇 ≈ 10−3. If 𝜇 is increased further, the slope rises quickly and becomes 2.0

in the glass-zone, demonstrating that some of the particles undergo free rotation [22, 46]. For

𝜇 ≥ 𝜇max, the slope decreases again and becomes 1.0, signaling diffusive rotation.

The short time dynamics is quantified by the value of the MSD at 𝑡 = 1, Fig. 2(b). At small

friction the TMSD(𝑡 = 1) is large and stays constant for 𝜇 ≤ 10−3, i.e., in this range of friction

the short time translational dynamics is independent of 𝜇 and the system is similar to 2D glass-

formers [47]. Upon approaching 𝜇min, TMSD(𝑡 = 1) starts to drop and reaches a minimum at

around 𝜇 = 0.15. This decrease, which is directly related to a shrinking cage-size, is compatible

with a power-law with an exponent of -2.0. Beyond 𝜇max, TMSD(𝑡 = 1) increases by two

orders of magnitude, signaling the acceleration of the dynamics, before reaching a plateau. The

RMSD(𝑡 = 1) shows qualitatively the same trend, although the 𝜇-dependence is much weaker.

Note that the first signs that friction influences significantly the dynamics are seen at around

𝜇 = 10−3. This surprisingly small value implies that the dynamics of real granular systems

cannot be described theoretically if friction is not taken into account.

Fig. 2(c) presents the 𝜇-dependence of different characteristic times 𝜏 (defined in the cap-

tion). All times increase exponentially quickly upon approaching 𝜇min (left inset of panel (c)),

beyond which 𝜏 cannot be determined reliably anymore. In contrast to this we find for 𝜇 ≥ 𝜇max

that 𝜏(𝜇) is given by a power-law with a critical point at 𝜇max, right inset of panel (c), hinting

the relation to the isostaticity point of the pack [10]. The presence of these two different growth

laws indicates that the mechanisms leading to the increase of 𝜏 are distinct.
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Dynamic constraints: For many-body systems the slowing down of the dynamics is often

related to a change in structural quantities like the packing fraction or coordination number [29,

30]. Fig. 3(a) shows that the cycle averaged coordination number, 𝑍 , is slightly above 4.0 if

𝜇 is small, while for large friction it slightly exceeds 3.0, thus compatible with the values

expected for a 2-dimensional static pack of particles with infinite elastic moduli [8]. That 𝑍 (as

well as the packing fraction, see Extended Data Fig. 2) decreases simply monotonically with

𝜇 indicates that static quantities like 𝑍 are not able to rationalize the re-entrance dynamics and

one needs also to consider the dynamics on the contact level. Hence we probe the probabilities

𝜂 that during a cycle a contact i) breaks, ii) persists and slides, or iii) is completed frictional

locked, see cartoons in Fig. 3(b). That panel demonstrates that 𝜂break is low and basically

independent of 𝜇, except for a small rise at the largest 𝜇. 𝜂slide decreases monotonically to zero

with increasing friction, while 𝜂lock increases monotonically and eventually saturates, which

demonstrates that with increasing 𝜇 the contact dynamic crosses over from sliding to rolling.

Maxwell’s idea which relates the number of constraints to the static mechanical rigidity of

a structure can be generalized to the dynamic case by defining for each contact in the pack a

cycle-averaged number of constraints as follows. During a cycle, one monitors the contact be-

tween particles 𝑖 and 𝑗 and defines 𝐶𝑖 𝑗 (𝑡), the associated number of constraints for this contact

by distinguishing the three cases introduced above: i) The contact breaks, which corresponds

to a normal force |F𝑖 𝑗
𝑛 | = 0 and hence the contact is not constrained, i.e., 𝐶𝑖 𝑗 (𝑡) = 0; ii) The

contact has |F𝑖 𝑗
𝑛 | > 0 with a tangential force |F𝑖 𝑗

𝑡 | > 𝜇 |F𝑖 𝑗
𝑛 |, thus is sliding, giving a constraint

of 1; iii) If |F𝑖 𝑗
𝑡 | < 𝜇 |F𝑖 𝑗

𝑛 | one has slipless rotation which corresponds to two constraints. The

cycle-averaged dynamic constraint of the contact, 𝐶𝑖 𝑗 , is thus given by

𝐶𝑖 𝑗 =
1
𝑇

∫ 𝑇

0
𝐶𝑖 𝑗 (𝑡)𝑑𝑡, where 𝐶𝑖 𝑗 (𝑡) =


0 if |F𝑖 𝑗

𝑛 (𝑡) | = 0

1 if |F𝑖 𝑗
𝑛 (𝑡) | > 0 and |F𝑖 𝑗

𝑡 (𝑡) | = 𝜇 |F𝑖 𝑗
𝑛 (𝑡) |

2 if |F𝑖 𝑗
𝑛 (𝑡) | > 0 and |F𝑖 𝑗

𝑡 (𝑡) | < 𝜇 |F𝑖 𝑗
𝑛 (𝑡) |.

(1)

(𝑇 is the cycle time and details on the calculation are in the Methods.) The number of con-

straints acting on particle 𝑖 is given by 𝐶𝑖 =
∑

𝑗 𝐶
𝑖 𝑗 and this quantity will indicate whether or

not the motion of the particle is blocked. The system average of 𝐶𝑖, 𝐶 𝑝𝑝 = 𝑁−1 ∑𝑁
𝑖=1 𝐶

𝑖, gives
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the average number of constraints per particle and shows, Fig. 3(a), that for small friction the

number of constraints is just above 2.0, rises gently towards 4.0 if 𝜇 approaches 𝜇min, before

decreasing again at the largest 𝜇. The 𝜇-dependence of 𝐶 𝑝𝑝 can be rationalized by making

the mean-field approximation 𝐶 𝑝𝑝 ≈ 𝑍 · 𝐶/2, where 𝐶 is the system- and time-averaged num-

ber of constraints per contact, shown in Fig. 3(a). (𝐶 𝑝𝑝 is compared with mean-field in the

SI.) One observes that at small friction 𝐶 𝑝𝑝 grows because 𝐶 increases, while 𝑍 stays con-

stant. The product reaches a maximum at around 𝜇min and stays constant up to around 𝜇max

since the slight decrease of 𝑍 is compensated by the increase of 𝐶. For 𝜇 > 𝜇max, 𝑍 drops

quickly, i.e., the structure becomes more open, while 𝐶 remains constant, resulting in a quick

drop of 𝐶 𝑝𝑝, ensuing an acceleration of the dynamics. This result is thus strong evidence that

the non-monotonic behavior of the relaxation dynamics can be understood directly from the

𝜇-dependence of the number of dynamic constraints on the particles.

The PDF of 𝐶𝑖, Fig. 3(c), allows to get insight on its average, 𝐶 𝑝𝑝. For 𝜇 = 0 there are

two narrow peaks at 4 and 5, corresponding to particles that have, respectively, four and five

frictionless contacts, i.e., 𝐶𝑖 𝑗 = 1. For somewhat larger 𝜇, they are absorbed into the broader

peak which shifts to the right, i.e., most of the contacts are at least temporarily locked. Upon

approaching the glass-region, 𝜇 = 0.02, the PDF starts to show again several narrow peaks,

𝐶𝑖 𝑗 ≈ 7.8 and 9.6, and an increase of 𝜇 to 0.3 makes these two peaks sharp and move to 8 and

10, respectively, and three others appear, at 4, 6, and 12, corresponding to particles that have

2, 3,...,6 neighbors with locked contacts, i.e., 𝐶𝑖 𝑗 = 2. Note that the peak at 4 is the last to

emerge, at around 𝜇max (Inset). This demonstrates that for 𝜇 > 𝜇max a typical local structure of

the system is a linear chain in which each particle has exactly 2 permanently locked contacts,

see cartoon in Fig. 3(c), indicating that spatial correlations of constrained contacts play an im-

portant role for the relaxation dynamics and below we will see that this is indeed the case.

Spatial structure of constraints: We now probe the nature of the cooperative motion, often

observed in other glassy materials [29, 48], in our system and relate it to the local structure and

the constraints. For this we compare the spatial map of 𝐶𝑖 𝑗 with the one of 𝐷2
min, the non-affine

displacement of a particle with respect to its nearest neighbor shell [49].

The upper left parts of Fig. 4 show the maps of 𝐶𝑖 𝑗 for increasing 𝜇, and Fig. 5(a) presents

the cluster analysis. We find that this structure transforms from a percolating 𝐶𝑖 𝑗 ≤ 1 network
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at 𝜇 = 10−5, Fig. 4(a), to a percolating 1 < 𝐶𝑖 𝑗 ≤ 1.99 one when 𝜇 approaches 𝜇min, Fig. 4(b),

while contacts 𝐶𝑖 𝑗 > 1.99 are scarce. This demonstrates that the dynamic slowing down is not

related to completely locked contacts but instead to the percolating network with intermediate

𝐶𝑖 𝑗 . Even deep in the glass zone, Fig. 4(c), the fully locked contacts do not yet percolate, but

they do so at the highest 𝜇, Fig. 4(d). This percolating network consists of chain-like structures

pictured in Fig. 3(c), and therefore can deform more easily in a collective manner.

The network of 𝐶𝑖 𝑗 determines how the system can relax, described by 𝐷2
min in the lower

right part of the panels. At small 𝜇, Fig. 4(a), 𝐷2
min is spatially very heterogeneous, since the

percolating network 𝐶𝑖 𝑗 ≤ 1 constraints the dynamics only weakly, thus giving rise to the

heterogeneous dynamics found in other glass-forming systems. For 𝜇 = 10−2, Fig. 4(b), the

dynamical heterogeneities increase strongly, quantified via 𝜒4 in Extended Data Fig. 3, and the

average magnitude of 𝐷2
min decreases, since the dynamics is now confined by the percolating

1 < 𝐶𝑖 𝑗 ≤ 1.99 network. Inside the glass zone, Fig. 4(c), the constraints are so strong that most

of the particles cannot change anymore their neighbors and hence the zones with significant

𝐷2
min become small islands. If 𝜇 exceeds 𝜇max, Fig. 4(d), zones with large 𝐷2

min reappear, but

in contrast to the case of small 𝜇, they form a multitude of small clusters, which are embedded

in the highly constrained contact network.

Dynamic constraints in configuration space: The influence of the constraints on the dy-

namics can be understood via the propagation of the system in configuration space, illustrated

by the cartoons on the upper right corner of the panels in Fig. 4. At very low 𝜇, the system

can freely explore the landscape between blue stable areas since there are only very few con-

straints. With increasing 𝜇 < 𝜇min, the exploration is hindered by barriers from increasing

frictional constraints, red lines, therefore the motion becomes more collective and slower.

Inside the glass region, the system is likely to occupy places surrounded by many more

barriers, therefore the relaxation ceases. To accommodate the strain, the system forms narrow

micro-shear bands, mainly oriented horizontally and vertically, in which the contacts slide be-

cause they have a small 𝐶𝑖 𝑗 , Fig. 5(b). The particles inside these bands have a large 𝐷2
min at

maximal strain, but most motion is reversible. Thus, although trapped near a local minimum

of the free energy landscape, the system has self-organized its structure permitting it to have a

high elasticity.
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When 𝜇 > 𝜇𝑚𝑎𝑥 , the number of stable structures increases, since friction lowers the min-

imal coordination number, allowing new relaxation channels to circumvent the barriers. This

is accomplished by the deformation of the open highly-constrained network, which allows the

particles enclosed to undergo a non-affine motion to relax. Some of these cells in the net-

work become unstable during the cycle, i.e., the local bubble bursts, leading ultimately to the

relaxation of the entire network.

The evolution of the structure in configuration space demonstrates the dual role of friction:

Increasing 𝜇 results in a higher 𝐶 which means more dynamic barriers, thus slower relaxation.

At around 𝜇max friction allows the creation of many stable states with low 𝑍 , facilitating relax-

ation via new pathways of deformation and reconstruction of the network.

Outlook: Our results demonstrate that the number of dynamic constraints is a good indi-

cator of the relaxation dynamics, and provide more insight than the often studied force chain

network, see Extended Data Figs. 4, 5. This implies that in frictional systems the dynamics is

governed by the distance of a contact from its Coulomb boundary and not by the magnitude

of its force, a conclusion that holds for all materials, irrespective of their friction coefficients

(hydrogels, grains, gears particles,..), thus opening the door to tune the relaxation dynamics

by controlling the friction coefficient via methods like surface chemical treatment [50]. Our

approach allows us to treat the dynamics of granular material and frictionless hard-sphere glass

formers within the same framework, which will permit to unify the physics of various disor-

dered systems. The approach of dynamic constraints to study dynamics is very general and

hence it can be adapted to other soft matter systems like suspensions, deformable cells, and

biological tissues [41, 43, 44]. As many systems (in and out of equilibrium) have complex free

energy landscapes, and often have a dynamics subject to time-varying constraints, applications

in domains like the traveling salesman problem, financial markets, and ecology network [42,

45], are expected to be feasible.
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Methods:

Model and Simulations: The contact force between particles is Hertzian, and the tangential

component is subject to a Coulomb cutoff [51, 52]. Thus the total force between two particles

𝑖 and 𝑗 is given by

F(𝑟) =
√︃
𝑅𝑖𝑅 𝑗/(𝑅𝑖 + 𝑅 𝑗 )

√
𝛿 [(𝑘𝑛𝛿 − 𝑚eff𝛾𝑛𝑣𝑛)n − (𝑘𝑡Δ𝑠𝑡 + 𝑚eff𝛾𝑡𝑣𝑡)t] .

Here n and t are, respectively, the normal and tangent vectors at the contact, and the overlap

between the particles is given by 𝛿 = 𝑅𝑖 +𝑅 𝑗 −𝑟, where 𝑅𝑖 is the radius of the particle. 𝑣𝑛 and 𝑣𝑡

are the relative speed of the particles, projected on n and t, respectively, and 𝑚eff is the effective

mass. Δ𝑠𝑡 is the displacement between two particles in the tangential direction. The absolute

value of 𝑘𝑡Δ𝑠𝑡 is subject to cutoff at 𝜇𝑘𝑛𝛿. We parameters we use are 𝑘𝑛 = 2 · 108g · cm−1 · s−2,

𝛾𝑛 = 11, 900cm−1 · s−1, 𝑘𝑡 = 2
7 𝑘𝑛, and 𝛾𝑡 = 1

2𝛾𝑛. Simulations were carried out using the

LAMMPS software [53] with a time step size of 4 · 10−5s. The simulation shear box, shown in

Inset of Fig. 1(b), consists of four amorphous walls to avoid heterogeneous crystallization of the

sample from the boundary and also to weaken the global convection effect that can occur along

smooth boundaries. Similar to an experimental setup for sheared systems [21], the bottom wall

(pink) moves sinusoidally in the horizontal direction with a shear amplitude of 𝛾0 = 0.05 and

a strain rate of ¤𝛾 = 0.1 s−1, while the left and the right walls (blue) move accordingly. The top

wall (green) applies a pressure of 𝑃 = 98100g · s−2 on the pack and it is constrained to move

only vertically. This gives an inertia number 𝐼 = ¤𝛾𝑑/
√︁
𝑃/𝜌 is 3.6 · 10−4, where 𝑑 is the mean

diameter of the particles, i.e., we are in the quasi-static shear regime [3]. Typically we used for

each values of 𝜇 1-4 independent samples and did up to 9 · 105 cycles to reach the steady state.

See Extended Data Table I for details.

Defining locked contacts: In practice we define a contact to be non-slipping, i.e., “locked”,

if the tangential force is inside the Coulomb-cone within a relative accuracy 𝜀, i.e., |F𝑡 | <

𝜇(1 − 𝜀) |F𝑛 |, where we have chosen 𝜀 = 10−6. To improve the statistics for obtaining the

results for the probabilities shown in Fig. 3(b) we averaged over 700 cycles. To calculate the

integral in Eq. 1 we divided the cycle into 100 equal intervals.
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19. Silbert, L. E., Ertaş, D., Grest, G. S., Halsey, T. C. & Levine, D. Geometry of frictionless

and frictional sphere packings. Phys. Rev. E 65, 031304 (2002).

20. Tordesillas, A., Walker, D. M., Froyland, G., Zhang, J. & Behringer, R. P. Transition

dynamics and magic-number-like behavior of frictional granular clusters. Phys. Rev. E

86, 011306 (2012).

21. Kou, B. et al. Granular materials flow like complex fluids. Nature 551, 360–363 (2017).

22. Zhao, Y. et al. Ultrastable Shear-Jammed Granular Material. Phys. Rev. X 12, 031021

(2022).

23. Royer, J. R. & Chaikin, P. M. Precisely cyclic sand: Self-organization of periodically

sheared frictional grains. Proc. Natl. Acad. Sci. 112, 49–53 (2015).

24. DeGiuli, E., McElwaine, J. N. & Wyart, M. Phase diagram for inertial granular flows.

Phys. Rev. E 94, 012904 (2016).

25. Otsuki, M. & Hayakawa, H. Shear modulus and reversible particle trajectories of fric-

tional granular materials under oscillatory shear. Eur. Phys. J. E 44, 70 (2021).

26. Sakellariou, M. Granular Materials (InTechOpen, 2017).

27. Lemaı̂tre, A. et al. Frictional Granular Matter: Protocol Dependence of Mechanical Prop-

erties. Phys. Rev. Lett. 126, 075501 (2021).

28. Forterre, Y. & Pouliquen, O. Flows of Dense Granular Media. Annu. Rev. Fluid Mech. 40,

1–24 (2008).

29. Binder, K. & Kob, W. Glassy Materials and Disordered Solids: An Introduction to Their

Statistical Mechanics (World Scientific, 2011).

11



30. Götze, W. Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory (Ox-

ford University Press, 2008).

31. Lubchenko, V. & Wolynes, P. G. Theory of Structural Glasses and Supercooled Liquids.

Annu. Rev. Phys. Chem. 58, 235–266 (2007).

32. Dyre, J. C. Colloquium: The glass transition and elastic models of glass-forming liquids.

Rev. Mod. Phys. 78, 953–972 (2006).

33. Wolf, D. E., Radjai, F. & Dippel, S. Dissipation in granular materials. Philos. Mag. B 77,

1413–1425 (1998).

34. Peshkov, A., Girvan, M., Richardson, D. C. & Losert, W. Reversibility of granular rota-

tions and translations. Phys. Rev. E 100, 042905 (2019).

35. Benson, Z. A., Peshkov, A., Yunger Halpern, N., Richardson, D. C. & Losert, W. Experi-

mentally Measuring Rolling and Sliding in Three-Dimensional Dense Granular Packings.

Phys. Rev. Lett. 129, 048001 (2022).

36. Fredrickson, G. H. & Andersen, H. C. Kinetic Ising Model of the Glass Transition. Phys.

Rev. Lett. 53, 1244–1247 (1984).

37. Kob, W. & Andersen, H. C. Kinetic lattice-gas model of cage effects in high-density

liquids and a test of mode-coupling theory of the ideal-glass transition. Phys. Rev. E 48,

4364–4377 (1993).

38. Ritort, F. & Sollich, P. Glassy dynamics of kinetically constrained models. Adv. Phys. 52,

219–342 (2003).

39. Liu, K., Kollmer, J. E., Daniels, K. E., Schwarz, J. M. & Henkes, S. Spongelike Rigid

Structures in Frictional Granular Packings. Phys. Rev. Lett. 126, 088002 (2021).

40. Babu, V., Vinutha, H. A., Bi, D. & Sastry, S. Discontinuous rigidity transition associated

with shear jamming in granular simulations. Soft Matter 19, 9399–9404 (2023).

41. Van der Naald, M. et al. Minimally rigid clusters in dense suspension flow. Nat. Phys.,

1–7 (2024).

42. Charbonneau, P. et al. Spin Glass Theory And Far Beyond: Replica Symmetry Breaking

After 40 Years (World Scientific, 2023).

12



43. Hannezo, E. & Heisenberg, C.-P. Rigidity transitions in development and disease. Trends

Cell Biol. 32, 433–444 (2022).

44. Atia, L. et al. Geometric constraints during epithelial jamming. Nat. Phys. 14, 613–620

(2018).

45. Bigras, L.-P., Gamache, M. & Savard, G. The time-dependent traveling salesman problem

and single machine scheduling problems with sequence dependent setup times. Discret.

Optim. 5, 685–699 (2008).

46. Zhao, Y. et al. Microscopic reversibility and emergent elasticity in ultrastable granular

systems. Front. Phys. 10 (2022).

47. Flenner, E. & Szamel, G. Fundamental differences between glassy dynamics in two and

three dimensions. Nat. Commun. 6, 7392 (2015).

48. Berthier, L., Biroli, G., Bouchaud, J., Cipelletti, L. & van Saarloos, W. Dynamical Het-

erogeneities in Glasses, Colloids, and Granular Media (OUP Oxford, 2011).

49. Falk, M. L. & Langer, J. S. Dynamics of viscoplastic deformation in amorphous solids.

Phys. Rev. E 57, 7192–7205 (1998).

50. Kim, H., van der Naald, M., Dolinski, N. D., Rowan, S. J. & Jaeger, H. M. Dynamic-

bond-induced sticky friction tailors non-Newtonian rheology. Soft Matter 19, 6797–6804

(35 2023).

13



Figure 1: Translational and rotational dynamics: Time dependence of the translational

mean squared displacement (TMSD), (a), and of the rotational one (RMSD), (b), for different

friction constants 𝜇 (given in the legend). The dashed and dotted lines are power-laws with

exponent 1.0 and 2.0, respectively. The RMSD is obtained by time-integrating the angular

displacements during the propagation of the system. Note that the value of these MSD’s at

𝑡 = 1 is non-monotonic as a function of 𝜇, i.e., the dynamics is re-entrant. Depending on the

value of 𝜇, the long time dynamics can be diffusive, super-diffusive, or caged. The Inset in (b)

shows the setup of the simulation. See Methods for details.
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Figure 2: Relaxation times for the translational and rotational degrees of freedom as a

function of friction coefficient: (a) Slope of the TMSD and RMSD at long times, obtained

from the last three decades of the curves in Fig. 1. Error-bars indicate 95% confidence interval.

(b) Value of TMSD and RMSD at 𝑡 = 1. The straight line indicates a power-law with exponent

-2. Error-bars indicate the standard deviation. (c) 𝜇-dependence of various relaxation times:

𝜏cont, the time for a particle to disconnect from a neighbor with which it was in contact at 𝑡 = 0;

𝜏vor, the characteristic time for a particle to have a change in its (radical) Voronoi neighborhood;

𝜏qs, the decay-time of the self-overlap function (threshold 0.3𝑑𝑠), and 𝜏TMSD, the time for the

TMSD to reach 0.1. The 𝑡−dependence of the corresponding time correlation functions is

shown in Extended Data Fig. 1. Error-bars indicate 95% confidence interval. Left Inset: Same

data for small 𝜇 in a log-lin plot. The gray straight lines are exponentials with a slope 200.

Right Inset: Same data for large 𝜇 as a function of 𝜇 − 𝜇max. The straight lines have slope -3.0.

The vertical red lines in the three panels indicate 𝜇min and 𝜇max.
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Figure 3: Distributions of averaged number of constraints as a function of friction coef-

ficient: (a) Effective number of constraints per contact, 𝐶, number of constraints per particle,

𝐶 𝑝𝑝, and the averaged number of contacts, 𝑍 . Solid lines show the time-averaged results, while

dashed lines and dotted lines show results at 𝛾 = 0 and 𝛾 = 0.05, respectively. Error-bars

indicate the standard deviation. (b) Cartoons show three different states of a contact: Sliding,

breaking, locked. The curves show the probability that during a cycle a contact is in a given

state. (c) Distribution of the time-averaged number of constraints per particle, 𝐶𝑖. Inset: Zoom

on the dotted rectangular region. Cartoon: Chain-like motion corresponding to the peak at

𝐶𝑖 = 4.
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Figure 4: Spatial structure of non-affine displacement and of dynamic constraints on

contacts for different 𝜇. Upper left part of the panels show the network of cycle-averaged

contacts, 𝐶𝑖 𝑗 , with the color code given at the bottom left. Lower right part of the panels show

the non-affine displacement after one cycle, grey scale code at bottom right. See main text for a

discussion of these panels. Insets show schematically the motion of the system in configuration

space. Dark blue: Mechanically stable regions where the particles have typically a coordina-

tion number of 4. Light blue: regions with typically coordination number 3. Orange/green

arrows correspond to the forward/backward motion of the cycle. Red lines are barriers that are

incompatible with the dynamic constraints and hence the system avoids them. Insets: (a) Many

stable regions have coordination number 4 and the absence of constraints allows the system

to move easily in configuration space. (b) The constraints make that the motion becomes hin-

dered resulting to a slowed down relaxation dynamics. (c) The number of constraints is so high

that motion is reversible and relaxation suppressed. Formation of first zones with coordination

number 3. (d) High friction allows the system to access mechanically stable state in which

particles have a typical coordination number of 3. These states allow the system to explore new

pathways and hence to relax.
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Figure 5: Percolation probability and length scales of the contact network. (a): The num-

ber of contact in the largest connected cluster of 𝐶𝑖 𝑗 (normalized by the total number of con-

tacts), full lines, the extension of this cluster in the 𝑥-direction, dashed lines, and (Inset) the

fractal dimension of this cluster, dotted lines. The three colors correspond to the three ranges

of contacts given in the legend. Error-bars indicate the standard deviation. (b): Network of

contacts and non-affine displacement field at maximal strain; 𝜇 = 1.4 · 10−1. The micro-shear

bands where 𝐷2
min is high after a quarter cycle (yellow boxes) are basically reversible once the

shear cycle is completed, see Fig. 4(c). Inset: Zoom on the white square area.
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Extended Data:

𝜇 cycles(104) 𝜇 cycles(104) 𝜇 cycles(104) 𝜇 cycles(104)
0 6 0.01 14, 48 0.1 6, 6 0.26 48, 72
10−8 6 0.012 30 0.12 6 0.28 12, 48
10−7 6 0.013 36, 84 0.14 6 0.3 12, 72, 84
10−6 6 0.014 24, 60 0.16 24,24 0.32 6
10−5 6 0.015 66, 72 0.18 18, 24 0.35 6
0.0001 6 0.016 24, 30 0.2 23, 24, 24 0.4 6
0.001 6, 6 0.018 18 0.21 24, 60 0.5 6
0.002 18, 30 0.02 2, 12, 18, 54 0.22 24, 72 0.7 6
0.003 6, 12 0.03 2 0.23 48, 90 1 6
0.005 16, 24 0.05 2 0.24 30, 60, 66 3 6
0.008 6 0.07 2, 6 0.25 54 10 6

Table 1: Table of simulation cycle numbers for each 𝜇: Each number represent a run with

independent random initial condition.
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Extended Data Fig. 1: Time dependence of persistence probabilities: (a) Time dependence

of the self-overlap (defined using a threshold of 0.3𝑑𝑠). (b) Probability that a particle that at

𝑡 = 0 was in a given Voronoi cell, is still in the same cell at time 𝑡. (c) The probability that at

time 𝑡 a contact that was present at time 𝑡 = 0 is still intact.
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Extended Data Fig. 2: Packing fraction, concentration of rattlers, relaxation times: (a)

Packing fraction as a function of 𝜇. 𝜙 decreases continuously with increasing 𝜇, making it

unlikely that the re-entrant dynamics is only an effect of the packing fraction. At the upper

bound of the glass-regime, i.e., 𝜇max, 𝜙 drops quickly because the increased friction allows to

stabilize states in which the particles have a low coordination number. (b) Probability that a

particle is a rattler, i.e, particles with fewer than 2 contacts. This probability is low (≈ 1%) at

small and intermediate fraction, i.e., as long as the typical coordination number is larger than

4. At high 𝜇 this probability grows significantly due to the formation of the open network

structure discussed in the main text. Error-bars in (a) and (b) indicate the standard deviation.

(c) 𝜇-dependence of the relaxation times, presented in Fig. 1 of the main text, normalized by

𝜏cont, the time it takes for a particle to break a contact. Error-bars indicate 95% confidence

interval.
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Extended Data Fig. 3: Time dependence of 𝜒4 for different values of 𝜇: The dynamic

susceptibility (self part) is used to quantify the strength of the dynamical heterogeneities in

the system and it has been calculated from the variance of the overlap function. 𝜒4 is relatively

small for small friction and increases rapidly if 𝜇 approaches the glass-regime. Inside the glass-

regime 𝜒4 is basically zero, since the system hardly relaxes. For 𝜇 ≳ 𝜇max it is again large and

decreases steadily with increasing friction. At the same time also the time scale at which

𝜒4(𝑡) peaks is non-monotonic in 𝜇. These results demonstrate that the system has pronounced

dynamical heterogeneities that peak at the boundary of the glass-zone.
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Extended Data Fig. 4: Probability distribution function of the forces: Panels (a) and (b)

show the PDF of forces at strain 𝛾 = 0 and panels (c) and (d) shows the ones at 𝛾 = 0.05. The

PDF’s for F𝑛 show a Gaussian decay for all values of 𝜇. The width of the Gaussian increases

in a monotonic manner as a function of 𝜇 at 𝛾 = 0.05, and fall on a master curve for 𝛾 = 0. The

PDFs of F𝑡 follow an exponential distribution with an increasing width. These results indicate

that the forces are not able to rationalize the re-entrant dynamics of the system.
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Extended Data Fig. 5: Network of the normal forces at the contacts: The upper left part

of the panels shows the magnitude of the normal component of the force at the contacts while

the lower right part shows the non-affine displacement of the particles. Scales are given at the

bottom of the figure. Panels (a)-(d) are at strain 𝛾 = 0 for different 𝜇 and panels (e)-(f) at strain

𝛾 = 0.05. No evident non-monotonic evolution is seen in the force chains when 𝜇 is increased.
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Supplementary Information

Mean field approximation Here we present the comparison between the mean field result

and the one of the simulation.

The number of constraints related to a contact between particle 𝑖 and 𝑗 at time 𝑡 can be

written as

𝐶𝑖 𝑗 (𝑡) = 1 · 𝟙𝑖 𝑗 (𝑡) + 2 · 𝟚𝑖 𝑗 (𝑡) ,

where 𝟙𝑖 𝑗 (𝑡) and 𝟚𝑖 𝑗 (𝑡) are functions describing the state of this contact at time 𝑡: 𝟙𝑖 𝑗 (𝑡) = 1 and

𝟚𝑖 𝑗 (𝑡) = 0 if the contact is sliding; 𝟙𝑖 𝑗 (𝑡) = 0 and 𝟚𝑖 𝑗 (𝑡) = 1 if the contact is locked; 𝟙𝑖 𝑗 (𝑡) = 0

and 𝟚𝑖 𝑗 (𝑡) = 0 if the contact is broken.

The time-averaged constraint of this contact is

𝐶𝑖 𝑗 =
1
𝑇

∫ 𝑇

0
𝐶𝑖 𝑗 (𝑡)𝑑𝑡 .

We define the time-averaged constraint per particle as

𝐶 𝑝𝑝 =
1

2𝑁

∑︁
𝑖, 𝑗

𝐶𝑖 𝑗 =
1

2𝑁𝑇

∑︁
𝑖, 𝑗

∫ 𝑇

0
(𝟙𝑖 𝑗 (𝑡) + 2 · 𝟚𝑖 𝑗 (𝑡))𝑑𝑡 ,

where 𝑁 is the particle number.

The system averaged contact number per particle at time 𝑡, i.e., the average coordination

number of a particle, is given by

𝑍 (𝑡) = 1
𝑁

∑︁
𝑖, 𝑗

𝟙𝑖 𝑗 (𝑡) + 𝟚𝑖 𝑗 (𝑡) ,

and thus the time-averaged number of contacts is

𝑍 =
1
𝑁𝑇

∑︁
𝑖, 𝑗

∫ 𝑇

0
(𝟙𝑖 𝑗 (𝑡) + 𝟚𝑖 𝑗 (𝑡))𝑑𝑡 .

Now we define the effective number of constraints per contact at time 𝑡 as

𝐶 (𝑡) =
∑

𝑖, 𝑗 𝟙
𝑖 𝑗 (𝑡) + 2 · 𝟚𝑖 𝑗 (𝑡)∑

𝑖, 𝑗 𝟙
𝑖 𝑗 (𝑡) + 𝟚𝑖 𝑗 (𝑡) ,

where the numerator is two times the total number of contacts at time 𝑡. The 𝜇−dependence of
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the ensemble averaged value of 𝐶 (𝑡) at 𝑡 = 0 and 𝑡 = 𝑇/4, which corresponds to strain 𝛾 = 0

and 0.05, respectively, are shown in Fig. 2a as a dotted and a dashed line, respectively.

The time-averaged effective number of constraints per contact is thus

𝐶 =
1
𝑇

∫ 𝑇

0

∑
𝑖, 𝑗 𝟙

𝑖 𝑗 (𝑡) + 2 · 𝟚𝑖 𝑗 (𝑡)∑
𝑖, 𝑗 𝟙

𝑖 𝑗 (𝑡) + 𝟚𝑖 𝑗 (𝑡) 𝑑𝑡 .

We now consider different way of averaging, by first calculating the averaged number of

total number of constraints in a cycle, and the averaged number of total contact time in a cycle,

and subsequently their ratio:

𝐶′ =
1
𝑇

∑
𝑖, 𝑗

∫ 𝑇

0 (𝟙𝑖 𝑗 (𝑡) + 2 · 𝟚𝑖 𝑗 (𝑡))𝑑𝑡
1
𝑇

∑
𝑖, 𝑗

∫ 𝑇

0 (𝟙𝑖 𝑗 (𝑡) + 𝟚𝑖 𝑗 (𝑡))𝑑𝑡
.

Note that

1
2
𝐶′ · 𝑍 = 𝐶 𝑝𝑝 .

Now we compare the difference between 𝐶 and 𝐶′. The 𝜇−dependence of the ensemble

average of 𝑍 (𝑡) at = 0 and 𝑡 = 𝑇/4, corresponding, respectively, to 𝛾 = 0 and 0.05, are shown in

Fig. 2a, dotted and dashed line, respectively. Note that these two curves are basically identical,

i.e., the 𝑡-dependence of 𝑍 (𝑡) is weak. This suggests that one can make the approximation

𝑍 ≈ 𝑍 (𝑡) .

We have

𝐶 =
1
𝑇

∫ 𝑇

0

∑
𝑖, 𝑗 𝟙

𝑖 𝑗 (𝑡) + 2 · 𝟚𝑖 𝑗 (𝑡)
𝑁𝑍 (𝑡) 𝑑𝑡 ≈ 1

𝑁𝑇𝑍

∫ 𝑇

0

∑︁
𝑖, 𝑗

(𝟙𝑖 𝑗 (𝑡) + 2 · 𝟚𝑖 𝑗 (𝑡))𝑑𝑡

and the last expression is just 𝐶′, i.e., one has

𝐶 ≈ 𝐶′

Thus we conclude that

𝐶 𝑝𝑝 ≈ 1
2
𝐶 · 𝑍.
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