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ABSTRACT

We investigate the black hole mass function (BHMF) and the Eddington ratio distribution function

(ERDF), focusing on the intermediate-mass black holes (IMBHs) with masses down to M• ∼ 104M⊙.
Based on the AGNs with a detected broad Hα emission line, we construct a sample of 14,242 AGNs

at redshift z < 0.35, including 243 IMBHs with M• < 106M⊙. By jointly modeling the BHMF and

ERDF via the maximum posterior estimation, we find that the BHMF peaks at ∼106M⊙ and exhibits a

relatively constant value of 10−4 Mpc−3 dex−1 at the low-mass end. By comparing the derived BHMF

of type 1 AGNs with the galaxy mass function based on the updated black hole mass - host galaxy

stellar mass relation, we derive the active fraction. We also determine the active fraction for all AGNs

using the upper and lower limit of the type 1 fraction. The active fraction decreases from 15%-40%

for massive galaxies (M⋆ > 1010M⊙) to lower than ∼2% for dwarf galaxies with M⋆ ∼ 108M⊙. These
results suggest that the black hole occupation fraction is expected to be ∼50% for low-mass galaxies

(M⋆ ∼ 108.5M⊙-109M⊙) if the duty cycle is similar between intermediate mass and supermassive black

holes.

1. INTRODUCTION

The origin and evolution of supermassive black holes

(SMBHs) are not well understood yet, despite their sig-

nificance in galaxy evolution. The presence of SMBHs

in almost all massive galaxies, as well as the correla-

tion with the host galaxies, suggests the co-evolution of

black holes and the galaxies (e.g., Rees 1984; Kormendy

& Richstone 1995; Ferrarese & Merritt 2000; Gebhardt

et al. 2000; Kormendy & Ho 2013; Woo et al. 2013; Heck-

man & Best 2014).

At the low-mass end of the mass spectrum are the

intermediate-mass black holes (IMBHs), which are typi-

cally defined as black holes with mass of 102M⊙ ≤ M• <

106M⊙. IMBHs are considered to hold a key to un-

derstanding the origin of SMBHs, as various theoretical

models predict different mass functions and occupation

fractions of IMBHs in dwarf galaxies even in the local

universe (refer to Greene et al. 2020 for a review). For in-

stance, the light seed scenario argues that SMBHs orig-

inated from the remnants of population III (Pop III)

stars with a typical mass of ∼100M⊙(e.g., Madau &

Rees 2001; Haiman & Loeb 2001; Heger et al. 2003;

Volonteri et al. 2003). Since Pop III stars were preva-

lent in the early universe, most of the galaxies in the

current universe should harbor SMBHs at their centers

if SMBHs were formed by the light seed channel. How-

ever, the presence of black holes heavier than 1010M⊙
at z ∼ 6.3 (Wu et al. 2015) poses challenges for the light

seed scenario, as growth at super-Eddington rates would

be necessary in a relatively short timescale. On the con-

trary, the heavy seed scenario suggests that the rapid

collapse of halo gas in the early universe formed IMBHs

of M• ∼ 105-106M⊙(e.g., Loeb & Rasio 1994; Bromm

& Loeb 2003; Begelman et al. 2006; Lodato & Natara-

jan 2006). In this case, SMBHs are not as prevalent in

dwarf galaxies as the light seed scenario predicts (e.g.,

Bellovary et al. 2019). However, this channel requires a

mechanism that prevents the fragmentation of the gas

(refer to Inayoshi et al. 2020b, and references therein).

Thus, it is important to investigate the black hole

mass function (BHMF) and the occupation fraction to

understand the origin of SMBHs. Previous constraints

on the BHMF, however, have been insufficient for test-

ing the black hole seed scenarios. One approach is to

infer the BHMF from the mass function (or anything

equivalent, such as the luminosity function) of galaxies.

Shankar et al. (2004), for instance, derived local BHMF

down to 106M⊙ by convolving the local galaxy lumi-

nosity function with the M• −Lsph relation (McLure &

Dunlop 2002), implicitly assuming that all galaxies har-

bor black hole at their center. Gallo & Sesana (2019)

advanced this approach further by accounting for the

occupation fraction in the galaxies observed in the local

universe (Miller et al. 2015). While this approach is use-

ful, it relies on the choice of the scaling relation of the

black hole mass against the host galaxy property, which
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is not well constrained for the low-mass black holes (e.g.,

Kormendy & Ho 2013; Reines & Volonteri 2015; Woo

et al. 2019). Furthermore, this approach cannot be em-

ployed to derive the occupation fraction, which is re-

quired for computing the BHMF.

The virial mass estimates of active galactic nuclei

(AGNs) can provide constraints on the BHMF since the

number of AGNs is the lower limit of the number of

black holes. For instance, Kelly et al. (2009) demon-

strated a Bayesian method to jointly model the BHMF

and Eddington ratio distribution function (ERDF) as

Gaussian mixtures. By applying the method to the

87 quasars in the Bright Quasar Survey (Schmidt &

Green 1983), including 16 with reverberation mass es-

timates, they constrained the local (z < 0.5) BHMF

down to M• ∼ 108M⊙. Kelly & Shen (2013) applied

the same method to the quasars in the Sloan Digital

Sky Survey (SDSS; York et al. 2000) Data Release 7

(DR7), resulting in a similar BHMF for M• > 108M⊙.
Schulze & Wisotzki (2010) utilized AGNs in the Ham-

burg/ESO Survey (Wisotzki et al. 2000) and constrained

the BHMF down to 106M⊙ based on a similar paramet-

ric approach assuming various functional forms of the

BHMF and ERDF. Greene & Ho (2007) were one of the

first to provide BHMF below 106M⊙ threshold by se-

lecting AGNs in SDSS and measuring their M• based

on the broad Hα emission. However, the BHMF or lu-

minosity function they derived with the 1/Vmax method

(Schmidt 1968) were substantially smaller compared to

other studies, including the aforementioned ones, which

may suggest that the selection completeness they used

was overestimated. Ultimately, these “BHMFs” only

trace the mass function of active black holes; thus, they

cannot be directly compared with the galaxy mass func-

tion to derive the occupation fraction without assump-

tions on the black hole activity, such as the duty cycle.

In this work, we present an improved estimate of

BHMF and ERDF based on the broad Hα-selected

AGNs in SDSS DR7 by modeling the sample complete-

ness more accurately compared to previous studies. In

section (hereafter denoted as §) 2, we define the sample

and quantify the selection bias in our sample. § 3 de-

scribes the mathematical details of our modeling. The

results of our modeling are presented in § 4, followed by

the discussions in § 5. Throughout this paper, we adopt

a flat ΛCDM cosmology with H0 = 72 km s−1 Mpc−1

and Ωm = 0.3.

2. THE SAMPLE

The sample of AGNs we used for measuring BHMF

is based on the Sloan Digital Sky Survey (SDSS; York

et al. 2000), which is a comprehensive optical survey of

photometry and spectroscopy. Its seventh data release

covers an area over 10,000 deg2, with photometry of 357

million objects and 1.6 million spectra. The details of

the survey were described by Abazajian et al. (2009).

SDSS used ugriz filter system (Fukugita et al. 1996)

for its photometry. Based on their photometric mea-

surements, they compiled two sets of spectroscopic tar-

gets covering 8,032 deg2. The main galaxy sample

(Strauss et al. 2002) consists of objects with r-band Pet-

rosian (1976) magnitudes brighter than 17.7 magnitudes

(rPetro ≤ 17.7) and not a point source (rPSF − rmodel ≥
0.3). Similarly, the quasar sample (Richards et al. 2002)

consists of objects with i-band PSF magnitudes brighter

than 19.1 magnitudes (iPSF < 19.1). Furthermore, ob-

jects that would saturate the spectrograph were rejected

(ifiber < 14.5 or rfiber < 15).

Liu et al. (2019) carried out an exhaustive search of

AGNs within the galaxy and quasar samples that ex-

hibit broad Hα emission lines in their spectra. After

removing the stellar continuum and modeled broad Hα

lines, they selected AGNs based on the following crite-

ria: 1. p-value smaller than 0.05 from F -test for the

broad component fitting, 2. broad Hα flux larger than

10−16 erg s−1 cm−2, 3. broad Hα S/N larger than 5, 4.

flux density at the peak of broad Hα larger than twice

of continuum-subtracted rms., and 5. full-width at half

maximum (FWHM) of broad Hα line profile larger than

that of narrow lines. The resulting sample consists of

14,584 broad-line AGNs within z < 0.35, which corre-

sponds to the redshift limit for Hα in the SDSS spectro-

graph, with their broad Hα luminosity spanning 1038.5-

1044.3 erg s−1.

Based on the sample and measurements by Liu et al.

(2019), we constructed our sample as follows. First,

we eliminated any object with broad Hα flux larger

than 7.5×10−13 erg s−1 cm−2 as such objects on average

would be brighter than saturation limit of the survey

(see § 2.1). Then, we calculated broad Hα luminos-

ity based on our cosmology, and rejected objects with

LHα < 1039 erg s−1, as the number of objects below it

was too small to produce meaningful statistics. We also

estimated the black hole mass and the Eddington ra-

tio from the luminosity and FWHM of broad Hα based

on the single-epoch mass estimator and Hα bolometric

correction of Lbol = (190± 10)× LHα provided by Cho

et al. (2023) and removed any object with Eddington

ratio smaller than 10−3. The resulting sample consists

of 14,242 AGNs, with their mass, luminosity, and Ed-

dington ratio spanning 4.5 < log10 M•/M⊙ < 10.5, 39 <

log10 LHα/erg s
−1 < 44.5, and −3 < log10 Lbol/LEdd <

0.5. Note that our sample includes 243 active IMBHs

with M• < 106M⊙. We present the distribution of the
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redshift, mass, and Eddington ratio of our sample in

Figure 1.

To correctly estimate the underlying population of

AGNs, especially for the low-mass and low-luminosity

end of the spectrum, the detection probability of each

object in a sample, or the selection function, needs to

be determined as accurately as possible. This probabil-

ity then can be used to estimate the number of AGNs

that are not included in the sample because of the se-

lection procedure. Our sample was constructed based

on two distinct samples (i.e., SDSS quasar and main

galaxy samples) and the selection process utilized the

measurements of various optical bands, which could be

contaminated by the stellar emissions of the host galaxy.

While we cover a wide range of mass and luminosity by

combining two distinct AGN samples, it is challenging

to correctly model the selection function of our sam-

ple, which was selected based on the broad Hα emission

lines. In contrast, host galaxy correction is not required

for AGN samples selected from X-ray surveys, while X-

ray binaries can be a challenge to properly construct

AGN sample, particularly at low-luminosity (e.g., Gallo

et al. 2008; Baumgartner et al. 2013).

We derived the selection function of our sample as

follows. In § 2.1, we constructed the spectral energy

distribution (SED) of pure AGNs without host galaxy

contamination. Based on this, we derived the saturation

limit of the AGNs in terms of Hα flux. Then, we mod-

eled the distribution of the host galaxy fraction in § 2.2.

Finally, we derive the selection function considering the

r-band flux from both the AGN and the host galaxy.

2.1. Spectral Energy Distribution of Quasars

The selection process of the SDSS involves magnitudes

of broadband photometry, which cannot separate the

AGN from its host. To construct the selection prob-

ability based on the AGN luminosity only, the flux of

broad Hα emission line is a more robust proxy, as its

distinctive feature can easily be separated from the host

galaxy spectra. In this subsection, we investigate the

correlation between r or i band flux and the broad Hα

flux of AGNs, which we simply refer to as the SED of

AGNs hereafter.

First, we compiled a list of objects with little-to-

no host contamination. We defined the quasar subset

of our sample, consisting of 7,826 objects, to be the

AGNs that were classified as quasar candidates but not

as galaxy candidates based on the photometric selec-

tion criteria SDSS used (Richards et al. 2002; Strauss

et al. 2002). However, a significant fraction of objects

in this subset, typically fainter than 17.7 mags in the r

band, appears to have Petrosian magnitudes brighter

than PSF magnitudes by more than 0.3 mags, indi-

cating their flux is dominated by the extended host

galaxy. We note that the r magnitude of 17.7 coin-

cides with the magnitude limit of the galaxy sample of

SDSS. Hence, we removed all objects with rPetro > 17.7

and rPSF − rmodel > 0.1. The latter condition is stricter

than the corresponding selection criterion of galaxy sam-

ple by Strauss et al. (2002) in order to remove all poten-

tially extended sources. The final subset of pure AGNs

consists of 1,462 AGN-dominated objects.

To simplify the problem, we assumed that the shape

of the SED does not depend on the luminosity of the

AGN, i.e., the ratio of the r-band or i-band flux to the

broad Hα flux is the same for all AGNs. This is mo-

tivated by the Shakura & Sunyaev (1973) disk model,

where the SED of the accretion disk follows a power law

Fν ∼ ν1/3 for wavelengths λ ≫ 103Å for a wide range of

accretion rates. Observationally, Richards et al. (2001)

demonstrated the r − i color of SDSS quasars is consis-

tent across different magnitudes except for the redshift

effect. Furthermore, the luminosity of the broad Hα

emission line is proportional to the optical continuum

luminosity over a wide range of luminosities (e.g., Yee

1980; Shen & Liu 2012; Jun et al. 2015; Cho et al. 2023).

Given the narrow range of redshifts of AGNs in our sam-

ple, we expect the flux ratio of r-flux to i-flux to Hα-flux

to be similar among the AGNs. Note that more distant

AGNs may have different r − i colors due to the 3000Å

bump (Grandi 1982) or the Lyman-α forest affecting the

magnitudes, which should be taken into account when

modeling the selection function of the optically selected

AGNs at high-z.

Under the assumption of the shared SED, we expected

the PSF magnitudes of r or i bands should follow a lin-

ear function of the broad Hαmagnitude, −2.5 log10 FHα,

with slopes of unity. Indeed, the slopes obtained from

ordinary least square fits were consistent with unity

within 1-σ uncertainty in both bands, as presented in

Figure 2. Fixing the slope to unity, the best-fit relations

read:

rPSF = −2.5 log10
FHα

10−6.25±0.01 erg s−1 cm−2
(1)

iPSF = −2.5 log10
FHα

10−6.30±0.01 erg s−1 cm−2
(2)

We note that the relation did not change significantly

even when we included all 7,826 objects from the quasar

subset.

We used the SED to calculate the saturation limit of

broad Hα flux. First, we found that for the subset of
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Figure 1. Distributions of the mass (left) and the Eddington ratio (right) as a function of redshift, along with histograms of
the redshift, mass, and Eddington ratio.
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Figure 2. Estimating the typical SED for the AGNs in the quasar subset. Black points were used for the fitting as described
in § 2.1, while grey points show the entirety of the objects that were flagged by the SDSS photometric pipeline as quasars but
not as galaxies. The best-fit relations, with fixing the slope to unity, are given as solid lines. The linear fits without fixing slope
are shown with dashed lines, for comparison.

pure AGNs,

rfiber − rPSF = 0.31± 0.01 [mag] (3)

ifiber − iPSF = 0.30± 0.01 [mag] (4)

Then, saturation limits in both bands can be expressed

as iPSF < 14.2 or rPSF < 14.7. Converting both

magnitudes using Eqs. 1 and 2, we derived the sat-

uration limit of Hα to be the smaller of two values,

7.5× 10−13 erg s−1 cm−2. We removed any AGN in our

sample above this threshold as described in § 3.

2.2. The flux selection function



5

While a majority of our sample is selected from the

SDSS quasar sample, a subsample of 4,308 objects is not

in the quasar sample, because the host galaxy flux dom-

inates over AGN continuum in the broadband photom-

etry. However, they are distinctively AGNs as demon-

strated by a prominent broad Hα emission line. Since

the quasar sample excluded any extended object whose

color was similar to that of galaxies (Richards et al.

2002), these objects were included in the galaxy sample

because they appeared as galaxies as extended objects

in r-band images (Strauss et al. 2002). Therefore, to

assign a detection probability for these AGNs based on

the AGN property, it is necessary to adopt a correla-

tion between AGN and host galaxy properties. Specif-

ically, for a given flux of broad Hα, we need to con-

strain the probability of being included in the galaxy

sample by having rPetro ≤ 17.7, which we express as

P (rPetro ≤ 17.7|FbHα).

We first compared the rPetro against the rPSF for our

entire sample. We found that the ratio of “extended

flux” in r band to the PSF flux, R ≡ 10−0.4(rPetro−rPSF)−
1, follows an exponential distribution,

p (R|k) =
{
k exp [−kR] (R ≥ 0)

0 (R < 0)
(5)

as shown in Figure 3. The best fit reads k = 0.44±0.01.

This, in turn, can be used to compute the probability of

observing rPetro for an AGN given the value of rPSF.

P (rPetro ≤ 17.7|rPSF)

=

∫ ∞

R=10−0.4(17.7−rPSF)−1
p (R|k) dR

(6)

Based on this, we calculated our fiducial selection

function at a given broad Hα flux, s(FbHα), as follows:

1. s(FbHα) = 0 if FbHα > 7.5× 10−13 erg s−1 cm−2.

2. s(FbHα) = 0 if FbHα < 10−16 erg s−1 cm−2.

3. Calculate the iPSF using Eq. 2.

4. s(FbHα) = 1 if iPSF ≤ 19.1.

5. If iPSF > 19.1, calculate rPSF using Eq. 1.

6. s(FbHα) = P (rPetro ≤ 17.7|rPSF)

The resulting selection function is demonstrated in Fig-

ure 4.

To test the susceptibility of our fitting result to the

selection function, we obtained an alternative fit with a

mixture of two exponential distributions,

p (R|k1, k2, f)

=

{
1

1+f k1e
−k1R + f

1+f k2e
−k2R (R ≥ 0),

0 (R < 0)

(7)

which can replace p (R|k) in Eq. 6. We determined

the best-fit parameters in Eq. 7 as k1 = 0.44 ± 0.01,

k2 = 0.10 ± 0.02, and f = 0.01 ± 0.01, where the un-

certainties were calculated based on the bootstrapping

analysis of 10,000 resampling with replacement (see red

lines in Figure 3) Using this best-fit, we also calculated

the alternative selection function as shown in Figure 4

(magenta line). We discuss the effect of the choice of

the selection function on the black hole mass function

in § 4.1.

3. METHODS

In this section, we present the method for determin-

ing BHMF and ERDF. We describe maximum posterior

modeling in § 3.1 and then we elaborate the 1/Vmax

method in § 3.2.

3.1. Maximum Posterior Modeling

Wemodel the distribution function of the number den-

sity of black holes at a given mass and Eddington ratio,

ϕ(M•, Λ), using a joint-distribution of the black hole

mass (M•) and the Eddington ratio (Λ ≡ Lbol/LEdd).

By marginalizing the other distribution function, the

black hole mass function (ϕ(M•)) and the Eddington-

ratio distribution function (ϕ(Λ)) can be respectively

expressed as

ϕ(M•) =
∫ ∞

0

ϕ(M•, Λ) dΛ, (8)

ϕ(Λ) =

∫ ∞

0

ϕ(M•, Λ) dM•. (9)

While ϕ is a function of (M•, Λ), it can be described

with any other pair of variables if the pair can fully de-

scribe (M•, Λ) (i.e., Jacobian determinant between the

pairs is not zero). For example, the luminosity function

(LF) is expressed as

ϕ(LbHα) =

∫ ∞

0

ϕ

(
M•, Λ =

LbHα

LbHα,Edd

)
dM• (10)

For mathematical convenience, we use log-variables

(m ≡ log10 M•/M⊙, λ ≡ log10 Λ) as our coordinates,

i.e., ϕ(m) = ϕ(M•) · (M• ln 10), ϕ(λ) = ϕ(Λ) · (Λ ln 10).

Similarly, the luminosity is expressed as

l = log10
LbHα

[erg s−1]
= m+ λ+ kEdd (11)

kEdd = log10

(
LbHα

Lbol
· LEdd/

[
erg s−1

]

M•/M⊙

)

= log10

(
1.26× 1038

190

) (12)

where the bolometric correction Lbol/LbHα = 190 is

adopted from Cho et al. (2023).
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(Eq. 5) is shown with a blue solid line, while the alternative fit (Eq. 7) is expressed with a red solid line along with its two
exponential components (dashed and dotted lines).
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Figure 4. Selection function of AGNs with a broad Hα
line (see § 2.2). The selection function used for modeling the
BHMF is denoted with a solid black line by combining quasar
and galaxy samples, while the selection function of the quasar
sample is presented with a green line. The probability that
an AGN is included in the galaxy sample (Eq. 6) is expressed
with a solid blue line, while the selection function constructed
based on the alternative fit (Eq. 7) as a red solid line.

We assume that ϕ(m,λ) can fully be described by a

set of parameters θ. Then, the probability of any black

hole having m can be described as

p (m|θ) = ϕ(m)∫∞
−∞ ϕ(m) dm

=
ϕ(m)

ϕ•
(13)

where

ϕ• =

∫ ∞

−∞
ϕ(m) dm =

∫ ∞

−∞
ϕ(λ) dλ (14)

is the comoving number density of the black holes. The

probability for λ or l can be defined in a similar manner.

If we assume no redshift evolution of the number density

between zmin = 0 and zmax = 0.35, the probability of a

black hole having a redshift z should be proportional to

the comoving volume at a given redshift:

p (z|θ) = p(z) =
dV
dz∫ zmax

zmin

dV
dz dz

(15)

where dV/dz = 4πd2c(z) · (d/dz)dc(z) is the differential

comoving volume given the comoving distance dc(z).

Given a set of observations qi = (li,mi, zi), the poste-

rior p (θ|qi) is written as (e.g., Kelly et al. 2009; Schulze

& Wisotzki 2010)

p (θ|qi) = p(θ) [p (I = 1|θ)]−n ×
n∏

i=1

p (qi|θ) (16)

where p(θ) is the prior distribution for θ, which is dis-

cussed in § 3.1.2. The detection probability, p (I = 1|θ),
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is a probability of any black hole being observed, under

the model given by θ, thus,

p (I = 1|θ)

=

∫ zmax

zmin

∫ ∞

−∞
s(FbHα(l, z)) p (l|θ) p (z|θ) dl dz

(17)

where s(FbHα) is the flux selection function of our sam-

ple described in § 2.2. The luminosity integral can be

expanded in terms of the integrals of m and λ,
∫ ∞

−∞
s(FbHα(l, z)) p (l|θ) dl

=

∫ ∞

−∞

∫ ∞

−∞
s(FbHα(m+ λ+ kEdd, z)) p (m,λ|θ) dmdλ

(18)

We note that p (I = 1|θ), which is adopted from Kelly

et al. (2009), is analogous to the normalization described

by Schulze et al. (2015, Eq. 5).

The last term in the posterior,
∏n

i=1 p (qi|θ), is the

product of likelihoods for individually observed AGNs,

and its calculation is described in § 3.1.1.

Lastly, we constrain the comoving number density

(ϕ•) by matching the number of AGNs in our sample

(Nobs) with the number of AGNs expected to be ob-

served given the joint distribution function and the se-

lection function,

Nobs = ϕ• ·
Ωs

4π

∫ ∞

−∞
dm

∫ ∞

−∞
dλ

∫ zmax

zmin

dz

p(m,λ|θ) · s(FbHα(m+ λ+ kEdd, z))
dV

dz

(19)

where Ωs is the survey area in the unit of sr. Therefore,

we find

ϕ• =
4π

Ωs

Nobs∫ zmax

zmin

dV
dz dz

1

p (I = 1|θ) =
Nobs/Vsurvey

p (I = 1|θ) (20)

where Vsurvey = Ωs

4π

∫ zmax

zmin

dV
dz dz is the survey volume. We

note that Kelly et al. (2009) modeled the total number of

AGNs in the survey volume using the negative binomial

distribution by assuming a logarithmic prior for the total

number of AGNs (p(logN) ∼ const.). For a fixed set of

parameters (θ), one can show that the expected value of

this approach is identical to Eq. 20.

3.1.1. Incorporating black hole masses and associated
uncertainties to likelihood

As mentioned in § 2, we used the single-epoch mass

estimator based on the luminosity and the FWHM of

Hα line derived by Cho et al. (2023), which provides

accurate mass estimates for the low-mass black holes.

This is written as

M•
106M⊙

= 3.2×
(
FWHMHα

103 km s−1

)2(
LHα

1042 erg s−1

)0.61

(21)

The scatter for this relation σ is given by σ =√
σ2
SL + σ2

f =
√
0.282 + 0.122 = 0.30 [dex], where σSL =

0.28 is the intrinsic scatter of the size-luminosity relation

and σf = 0.12 is the uncertainty of f -factor used in the

mass estimator (Woo et al. 2015). We assume the scat-

ter to follow a normal distribution in logarithmic units.

We further consider the observational uncertainty of the

luminosity as follows. Let l̃ be the true luminosity of

an AGN. We assume the observed luminosity follows a

log-normal distribution, li ∼ N
(
l̃, εi

2
)
. Then, the true

mass and Eddington ratio of the black hole, m̃ and λ̃,

can be written as

m̃ = mi +B
(
l̃ − li

)
+ t (22)

λ̃ = λi + (1−B)
(
l̃ − li

)
− t (23)

where B = 0.61±0.04 is the slope of the size-luminosity

relation and t ∼ N
(
0, σ2

)
is the intrinsic scatter. If

we write the Gaussian kernel of width w as Kw(x) =
1√
2πw

exp
[
− 1

2

(
x
w

)2]
, the likelihood can be written as

p (qi|θ) = p (z|θ)
∫ ∞

−∞
dl̃

∫ ∞

−∞
dt

· p
(
m̃, λ̃

∣∣∣θ
)
·Kσ(t)Kεi

(
l̃ − li

) (24)

In practice, the Gaussian convolutions of the likeli-

hood were performed using 11th-order Gauss-Hermite

quadratures (Abramowitz & Stegun 1972). The detec-

tion probability was calculated with Fast-Fourier Trans-

form with 3× 10−5 dex resolution, using pyFFTW wrap-

per for FFTW3 library (Gomersall 2016; Frigo & Johnson

2005).

3.1.2. Modeling the distribution functions

Given that the maximum posterior method is a para-

metric approach, we must express the model for ϕ(m,λ)

with a set of parameters θ. For instance, Kelly et al.

(2009) used a mixture of bivariate Gaussians to model

the BHMF and ERDF. However, this approach requires

the number of Gaussians to be large enough to accu-

rately model the shape of the functions, especially when

the dynamic range is wide. Instead, we chose our model

to follow specific functions commonly used to describe

luminosity and mass functions, to reduce the number of

parameters to describe them.

We assume the BHMF is independent of the Edding-

ton ratio and the ERDF is independent of the black

hole mass, similar to many studies in the literature (e.g.,

Schulze & Wisotzki 2010; Ananna et al. 2022). Then,

we can write the joint distribution function (ϕ(m,λ)) as

ϕ(m,λ) = ϕ• · p (m|θ) · p (λ|θ) (25)
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We use the following 3 functions to model the shapes

of BHMF and ERDF in this study. For consistency with

the literature, we present them in terms of X, which can

be eitherM• or Λ. For probabilities for log-scale variable
x = log10 X, the probability shape changes as

p (x|θ) = p (X|θ) ·X ln 10 (26)

A Schechter (1976) function (abbreviated as ‘S’) is

motivated by the galaxy luminosity function:

p (X|θ) ∼ 1

Xc

(
X

Xc

)α

· exp
(
− X

Xc

)
(27)

This function is described by 2 parameters (apart from

the comoving number density), Xc and α.

A modified Schechter function (abbreviated as ‘mS’)

is also used (e.g., Aller & Richstone 2002; Shankar et al.

2004; Schulze & Wisotzki 2010).

p (X|θ) ∼ 1

Xc

(
X

Xc

)α

· exp
(
−
[
X

Xc

]β)
(28)

which adds another parameter β to the Schechter func-

tion.

Lastly, motivated by the double power law used in the

literature (e.g., Schulze & Wisotzki 2010), we define a

broken power law (abbreviated as ‘bpl’) as:

p (X|θ) ∼ 1

Xc

(
X

Xc

)γ1
(
1

2

[
1 +

X

Xc

])γ2−γ1

(29)

This function was chosen over the double power law

function because the broken power law function does

not suffer from degeneracy between the power indexes

γ1 and γ2; ϕ ∼ Xγ1 always holds when X ≪ Xc while

ϕ ∼ Xγ2 when X ≫ Xc.

Integrating these functions over X ∈ [0,∞), or equiv-

alently x ∈ (−∞,∞), usually diverges, unless specific

combinations of parameters are used. Thus, we normal-

ize these functions by restricting our integration within

the following intervals: m ∈ [4, 11] and λ ∈ [−3, 0.5]. As

a result, our derived BHMF only describes the distribu-

tion of (type 1) “active” black holes.

We imposed flat priors for the parameters describing

the models, bounded by intervals to be considered phys-

ical. For the parameters describing characteristic scales

(Mc or Λc), the priors were chosen so that they are flat

in the logarithmic scale. When the maximum posterior

estimate was found near the edge of the interval, we re-

laxed the constraining interval by several dexes and did

our analysis again. If it still failed to be constrained, we

simply presented the last result as is and described the

convergence.

In this study, we consider three pairs of two fitting

functions, respectively for BHMF and ERDF; 1) a com-

bination of a broken power law for BHMF and a mod-

ified Schechter function for ERDF (hereafter bpl-mS),

which is our best-fit model, 2) a combination of a modi-

fied Schechter function for BHMF and a Schechter func-

tion for ERDF (hereafter mS-S), which is motivated by

the work of Schulze & Wisotzki (2010), 3) a combina-

tion of broken power laws for both BHMF and ERDF

(hereafter bpl-bpl), which is adopted from Ananna et al.

(2022). We will discuss the differences in results using

these models in § 4.1.

3.2. 1/Vmax and 1/Vsurvey Methods

While we mainly use maximum posterior modeling for

constraining BHMF and ERDF, we also use the tradi-

tional 1/Vmax method (Schmidt 1968) for comparison.

Non-parametric estimates of the BHMF and ERDF can

be obtained by simply counting the effective number of

sources within a bin of mass, Eddington ratio, or lumi-

nosity, then by dividing the counts by the survey volume

Vsurvey. The effective number of an object is inflated by

a factor of Vsurvey/Vmax,i, where Vmax,i represents the

volume within which the object in question can be ob-

served given the selection function. However, the 1/Vmax

method fails to correct for the observational uncertain-

ties, leading to Eddington bias at high luminosities (Ed-

dington 1913). Furthermore, because the selection is

based on the flux, not M• or λ, the derived BHMF or

ERDF is biased against the low-mass or low-Eddington

ratio objects, which is referred as “sample censorship”

or “sample truncation” in the literature (e.g., Schulze &

Wisotzki 2010; Ananna et al. 2022). Despite these lim-

itations, this method is popularly used in the literature

because of its simplicity.

The average function, ⟨ϕx⟩, within an interval x ∈
[xl, xu] for an arbitrary variable x is given as

⟨ϕx⟩ =
1

xu − xl

∫ xu

xl

ϕ(x) dx

=
1

xu − xl

∑

xi∈[xl,xu]

1

Vmax,i

(30)

and its uncertainty is

δ [⟨ϕx⟩] =
1

xu − xl

√√√√
∑

xi∈[xl,xu]

1

V 2
max,i

(31)

We calculate Vmax,i for each object as

Vmax,i =
Ωs

4π

∫ zmax

zmin

p (I = 1|xi, z) ·
dV

dz
dz (32)
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where p (I = 1|xi, z) is the selection probability for an

object having xi. For instance, if xi = li, the se-

lection probability becomes the flux selection function

p (I = 1|li, z) = s (FbHα(li, z)), which we used for cal-

culating the “flux-corrected” estimate the LF. On the

other hand, p (I = 1|xi, z) = 1 within comoving dis-

tances dc ∈ [dc,min,i, dc,max,i] reduces Vmax,i to a volume

of a truncated cone (e.g., Weigel et al. 2016) as

Vmax,i =
Ωs

3

(
d3c,max,i − d3c,min,i

)
(33)

To correct for the sample censorship, we follow the

recipe described by Schulze & Wisotzki (2010). The

selection probability for an AGN at a certain black hole

mass or an Eddington ratio are computed as

p (I = 1|mi, z)

=

∫ λmax

λmin

s(FbHα(l(mi, λ), z)) p(λ) dλ
(34)

p (I = 1|λi, z)

=

∫ mmax

mmin

s(FbHα(l(m,λi), z)) p(m) dm.
(35)

Replacing the flux selection function in Eq. 32 with

the mass selection probability or the Eddington ra-

tio selection probability yields “mass-corrected” or

“Eddington-ratio-corrected” estimates. Note that the

mass-corrected estimate requires a priori knowledge

of the ERDF, while the Eddington-ratio-corrected es-

timate requires a priori knowledge of the BHMF, in

contrast to flux-corrected estimates (see discussion by

Schulze & Wisotzki 2010). In addition, the mass-

corrected estimates still suffer from the Eddington bias.

Therefore, we use 1/Vmax estimates for a consistency

check.

Alternatively, we define another metric, namely,

1/Vsurvey, which can be obtained by replacing Vmax,i in

Eqs. 30 and 31 with Vsurvey. Effectively, this yields a

histogram of the sample normalized by the survey vol-

ume and the interval size. Note that this histogram is

not corrected for any of the biases we discussed previ-

ously. Since 1/Vsurvey estimates do not depend on any

assumptions, we compare them with the prediction from

our models to assess the goodness of the fit. For this,

we define the “observed functions” as

ϕ̂(m) =

∫ ∞

−∞
ϕ(m′)

(
V (m′)
Vsurvey

)
Kσ(m−m′) dm′ (36)

ϕ̂(λ) =

∫ ∞

−∞
ϕ(λ′)

(
V (λ′)
Vsurvey

)
Kσ(λ− λ′) dλ′ (37)

where

V (x) =
Ωs

4π

∫ zmax

zmin

p (I = 1|x, z) dV
dz

dz (38)

The Gaussian kernel Kσ in Eqs. 36 and 37 represents

the scatter (uncertainty) of the single-epoch mass es-

timator. We adopt σ = 0.30 [dex] unless a different

scatter is assumed for the particular model. A convo-

lution with this kernel simulates the Eddington bias in-

duced by the uncertainty of the single-epoch mass, as

discussed in § 3.1.1. In the case of luminosities, the

observational uncertainty, εi, is present in 1/Vsurvey es-

timates, and the average luminosity uncertainty of our

sample is
√
⟨εi2⟩ ∼ 0.03 [dex] (< 0.09 [dex]), which is

far smaller compared to the scatter of the single-epoch

mass estimator. Thus, the observed functions are ex-

pected to closely replicate the 1/Vsurvey estimates. We

discuss the goodness of our models by comparing 1/Vmax

and 1/Vsurvey estimates in § 4.1.

4. RESULTS

In this section, we present the BHMF and ERDF es-

timates by applying the methods presented in § 3. We

performed Markov-chain Monte Carlo (MCMC) simula-

tions using emcee library (Foreman-Mackey et al. 2013)

to obtain the maximum posterior solution. We carried

out 10,000 iterations of MCMC simulation with an en-

semble size of twice the number of parameters. The set

of these parameters did not include the comoving num-

ber density (ϕ•), which is computed after the posterior

distribution is obtained. By inspecting the trace plots

of each model, we concluded that the parameters always

converged before the first 5,000 iterations. From the lat-

ter half of iterations, we chose the maximum posterior

parameters and their central 68% interval (equivalent

to 1-σ for Normal distribution) as our best-fit estimates

and uncertainties. The comoving number density (ϕ•)
was computed for each set of parameters in the posterior

sample using Eq. 20, and its best-fit values and uncer-

tainties were selected. The results are summarized in

the Table 1.

We also calculated 1/Vmax estimates, respectively

for flux-corrected, mass-corrected, and Eddington-ratio-

corrected cases, as well as 1/Vsurvey estimates, as de-

scribed in § 3.2. We use the interval sizes of 0.5 dex

for estimating BHMF and LF and 0.25 dex for ERDF.

The minimum nonzero value for a 1/Vsurvey estimate,

corresponding to a singular object in a given inter-

val, is 1.0 × 10−9 Mpc−3 dex−1 for BHMF and 2.1 ×
10−9 Mpc−3 dex−1 for ERDF.

4.1. Comparison of BHMF and ERDF estimates

depending on the functional forms

We compare the maximum posterior estimates, the

1/Vmax estimates, and 1/Vsurvey estimates in Figure 5.
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Table 1. The best-fit parameters of the black hole mass function model

Model ϕ• BHMF ERDF[
10−4 Mpc−3

]
log10 Mc/M⊙ α or γ1 β or γ2 log10 Λc α or γ1 β or γ2

(1) (2) (3) (4) (5) (6) (7) (8)

bpl – mS 5.32+0.37
−0.66 6.75+0.05

−0.07 −0.60+0.11
−0.08 −2.56+0.02

−0.03 −2.35+0.31
−0.31 0.34+0.21

−0.22 0.53+0.03
−0.08

mS – S 11.0+0.82
−0.28 1.01+0.22

−0.01
† −0.20+0.01

−0.08 0.164+0.003
−0.001 −1.20+0.01

−0.01 −0.62+0.03
−0.02 -

bpl – bpl 5.61+0.50
−0.57 6.76+0.06

−0.05 −0.62+0.09
−0.09 −2.56+0.02

−0.03 −0.41+0.12
−0.11 −0.34+0.06

−0.08 −10.25+1.94
−1.55

bpl – mS

Alt. Selection 5.27+0.45
−0.74 6.77+0.06

−0.06 −0.62+0.10
−0.09 −2.56+0.03

−0.02 −2.36+0.24
−0.42 0.33+0.30

−0.18 0.52+0.04
−0.07

2× Int. Scatter 4.89+0.49
−0.27 6.59+0.06

−0.07 −0.69+0.09
−0.10 −2.41+0.02

−0.02 −2.05+0.08
−0.01 2.00+0.00

−0.07
† 0.78+0.04

−0.01

Note—(1): The name of the model as described in § 3.1.2. (2): The comoving number density of the active black holes, defined
by Eq. 14. (3)-(5): Appropriate sets of parameters for the BHMF as defined in § 3.1.2. (6)-(8): Appropriate sets of parameters
for the ERDF. The representative values are the maximum posterior estimators, and the uncertainties are the central 68%
intervals.

†Converged on parameter bounds.

The maximum posterior estimates for the intrinsic

BHMF and ERDF based on the bpl-mS and bpl-bpl

models are generally similar, while the mS-S model-

based estimates show a different shape. This is because

the exponential nature of the mS-S model can not repro-

duce the shape of the observed BHMF at the high-mass

end. Note that the uncertainties of ϕ(m) and ϕ(λ) are

relatively small except for the high Eddington ratio end

because of a small number in the bin. For example,

there is only one object at λ > 0.25.

The 1/Vmax estimates are larger than the maximum

posterior estimates, particularly for ERDF. For exam-

ple, the 1/Vmax estimate of ϕ(λ) is larger than the max-

imum posterior ϕ(λ) by more than 1 dex at λ > 0. This

is caused by the fact that the correction factors for the

sample censorship (i.e., Eqs. 34 and 35) do not correct

for the Eddington bias, while the maximum posterior

estimates suffer no Eddington bias. Thus, the 1/Vmax

estimates are suppressed near the maxima of 1/Vsurvey

estimates and enhanced elsewhere. This demonstrates

the bias inherent to the 1/Vmax and 1/Vsurvey estima-

tors. Hereafter, we only present 1/Vsurvey estimates in

comparing the observed functions without further dis-

cussing 1/Vmax estimates.

We also present the simulated observed functions for

BHMF and ERDF based on the maximum posterior es-

timates, after taking into account the selection function

and the uncertainties of mass and Eddington ratio (dot-

ted lines in Figure 5). Then, we compare the simu-

lated observed functions with the 1/Vsurvey estimates.

As described in § 3.2, the simulated observed functions

are expected to properly reproduce 1/Vsurvey estimates.

We find that the simulated observed function of BHMF

based on bpl-mS and bpl-bpl models is virtually consis-

tent with the 1/Vsurvey estimates. On the contrary, the

simulated observed function based on the mS-S model

predicts a smaller number of high-mass AGNs and a

larger number of low-mass AGNs than the other two

model-based simulations as well as the 1/Vsurvey esti-

mates. Given that we aim to constrain the BHMF at

the low-mass end, we conclude that the mS-S model

does not properly fit the sample. In the case of the

ERDF, the simulated observed functions based on all

three models are similar and generally consistent with
the 1/Vsurvey estimates. At the lowest λ, the discrep-

ancy is pronounced, with the bpl-mS model predicting

the lowest number of AGNs. Considering the 1/Vsurvey

estimate is even smaller than the simulation of the other

two model-based estimates, we conclude that bpl-mS

model reproduces ERDF the best, although the differ-

ence among three models is not significant. For the rest

of the paper, we present the bpl-mS model-based maxi-

mum posterior estimates as the representative model.

4.2. Dependency of the shape of the selection function

and mass uncertainty

We investigate the effect of the different assumptions

that we applied to model the selection function and

the uncertainty of black hole mass on the estimates of

BHMF and ERDF. We assume an uncertainty of 0.3 dex

for the single-epoch mass estimator and utilize the se-
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Figure 5. The maximum posterior estimates and 1-σ uncertainties for BHMF (left) and ERDF (right) based on the three dif-
ferent pairs of the functional forms (black, magenta, and yellow solid lines), compared to the mass-corrected (left) or Eddington-
ratio-corrected (right) estimates (black filled circles), and the flux-corrected estimates (crosses) based on the 1/Vmax method
with the bpl − mS model. The simulated observed density functions is presented for BHMF (left) and ERDF (right) after
considering the selection function and the mass uncertainty. The 1/Vsurvey estimates (open circles) are compared with the
maximum posterior simulations.
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Figure 6. Comparison of the maximum posterior estimates and 1-σ uncertainties for BHMF (left) and ERDF (right) based
on different assumptions and the mass uncertainty. Our best estimates of the intrinsic BHMF and ERDF based on the bpl-mS
model and 0.3 dex mass uncertainty (black lines) are compared to the estimates using the alternative selection function (blue
lines; described in § 2.2) or using a factor of two increased mass uncertainty (red lines). The simulated observed functions based
on maximum posterior modeling with each of three assumptions (dotted lines) are compared to the 1/Vsurvey estimates (open
circles).

lection function given by Eq. 5 for maximum posterior

modeling and the 1/Vmax. We denote the maximum

posterior estimates based on the bpl-mS model and the

0.3 dex mass uncertainty as “Standard bpl-mS”. In addi-
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tion, we consider two alternative cases. First, we adopt

the alternative selection function described in § 2.2,

which effectively increases the selection probability at

low flux (see red line in Figure 4), and calculate the

BHMF and ERDF estimates based on maximum poste-

rior modeling. Second, we artificially increased the mass

uncertainty, σ, from 0.3 dex to 0.6 dex (see § 3.1.1)

to consider unaccounted uncertainties in the mass es-

timate, and carried out maximum posterior modeling,

which is expressed as ”2× Int. Scatter”. In other words,

we used σ = 0.6 dex for Eqs. 36 and 37.

We compare the results based on the assumptions in

Figure 6. Note that the choice of the selection func-

tion does not change the BHMF and ERDF significantly

since the increase of the selection probability of low-flux

AGNs is insignificantly for changing the number density

even at low-mass and low-Eddington ratio bins. In con-

trast, the increased intrinsic scatter substantially modi-

fies the shape of the ERDF while its effect on the BHMF

is not clearly detected. Thus, we expect the mass un-

certainty is not likely to be as large as 0.6 dex.

Compared with the observed function constrained by

1/Vsurvey estimates, the simulated observed function of

BHMF and ERDF from maximum posterior modeling

with an assumption of 0.6 dex mass uncertainty shows

a very different shape for both BHMF and ERDF, im-

plying that the mass uncertainty is much smaller than

0.6 dex. Nevertheless, the change in the BHMF ϕ(m)

caused by different assumptions is smaller than 0.5 dex

over all mass scales. Thus, we conclude that our best

fit for BHMF is stable against the choice of different

assumptions.

4.3. Comparison with the literature

To compare our results with the literature, we com-

piled the reported density functions from Greene &

Ho (2007, BHMF, LF(bHα) (1/Vmax)), Shankar et al.

(2009, BHMF(all), LF(bol)), Schulze & Wisotzki (2010,

BHMF, ERDF (mS, S)), Kelly & Shen (2013, BHMF,

ERDF), and Ananna et al. (2022, BHMF, ERDF, LF(X-

ray) (type 1)). In the case of LF, we collected not

only the broad Hα LF but LFs for bolometric lumi-

nosity (Shankar et al. 2009) and X-ray (Ananna et al.

2022). We adopted X-ray bolometric correction of

Lbol/L14-195 keV = 7.4 (Ananna et al. 2022) and Hα

bolometric correction of Lbol/LbHα = 190 (Cho et al.

2023) to convert the given LF to Hα LF. We also note

that the BHMF by Shankar et al. (2009) is based on the

galaxy luminosity function and the black hole mass scal-

ing relations. Thus, this is a total BHMF rather than a

type 1 active BHMF, which we present along with the

rest of the literature. Uncertainties for the functions

were collected whenever available. When they were pro-

vided as parameter uncertainties, we determined the 1-

sigma uncertainties based on the 1,000 Monte Carlo re-

alizations. Lastly, we multiplied the appropriate factor

to compensate for the differences in the Hubble constant

from the one we used (h = 0.72).

In Figure 7, we present our best-fit BHMF, ERDF,

and broad Hα LF alongside with the results collected

from the literature. Regardless of the method they used,

we plotted the literature functions as solid lines. We

showed the functions in the intervals they were originally

presented. If the functions were presented as values, we

simply showed them all. Conversely, if they were pro-

vided as functions and parameters, we considered those

functions valid only within the x-axis intervals of the fig-

ures plotting the functions in their respective references.

The BHMF we found follows a broken-power law

with a peak near the mass M• ∼ 106M⊙. For

the intermediate-mass regime, we find the BHMF to

be relatively constant in logarithmic scale near ∼
10−4 Mpc−3 dex−1. Comparing with the literature, we

found a striking consistency with the functions reported

by Schulze & Wisotzki (2010) and Ananna et al. (2022)

for masses 106.5M⊙ < M• < 109M⊙; for higher mass

they predicted much smaller values of BHMF, which

may be because the Schechter-like models they used in

their fits are asymptotic to exponential decay at high-

mass end. Kelly & Shen (2013) predicted a BHMF with

a similar value to our fit at higher masses (> 108M⊙)
with a steeper slope, possibly due to their choice of pri-

ors upon the Gaussian mixture modeling. On the con-

trary, we predict a significantly larger number of black

holes than what Greene & Ho (2007) found using the

broad Hα from SDSS DR4 spectra. While there could

be many explanations involving the spectroscopic com-

pleteness of DR4 itself, the choice of the decomposition

method used by the authors, etc., the most likely ex-

planation would be the completeness of the sample was

overestimated. This is further supported by the obser-

vation that the other studies using similar sample and

selection criteria, notably Kelly & Shen (2013) who used

SDSS DR7, predicted much larger BHMF than what

Greene & Ho (2007) found, similar to ours. Lastly,

since we constructed our BHMF based on the AGNs,

our BHMF is ∼0.1%-10% of the total BHMF estimated

by Shankar et al. (2009) or Gallo & Sesana (2019). We

discuss the active fraction in detail in § 5.1.

Our ERDF is less consistent with the literature, al-

though this is to be expected. Since our BHMF spans

a larger dynamic range compared to the literature, the

total number density involved in our sample should be

much higher. Consequently, the ERDF should also be
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Figure 7. The best fit of BHMF (left), ERDF (middle), and broad Hα LF (right), compared to the literature. The maximum
posterior prediction of the bpl-mS model, as well as its 1-σ uncertainties is denoted by the black solid line and the shaded region.
Filled circles denote the mass-corrected estimates using Vmax method, as described in § 3.2. Details of the individual functions
from the literature are described in § 4.3.

much higher in proportion to the total number den-

sity. Focusing on the shape, our ERDF is more con-

centrated towards the Eddington ratio of a few percent,

while the literature functions predict monotonically de-

creasing ERDF. As demonstrated in § 4.1, assumptions

on the mass and/or luminosity uncertainty affect the

resulting ERDF significantly. Nevertheless, should the

ERDF be smaller for Λ <0.1-1% as our best-fit model,

the physical mechanism behind it could be the change in

the accretion state (e.g., Inayoshi et al. 2020a). Another

possible explanation could be that there is a minimum

required accretion rate for a broad-line region (BLR)

to exist (e.g., Nicastro 2000). Then, the discrepancy in

the shape between our ERDF and X-ray-based ERDF

by Ananna et al. (2022) can be explained as the BLR

being absent for the low-λ AGNs.

Lastly, our broad Hα LF is consistent with the X-ray

and bolometric LF by Shankar et al. (2009) and Ananna

et al. (2022). We observe the difference between our LF

and the Hα LF by Greene & Ho (2007), and this is

most likely to be of the same origin as the differences in

BHMF.

5. DISCUSSIONS

5.1. Active Fraction

The black hole occupation fraction of low-mass galax-

ies provides valuable information on the origin of

SMBHs (e.g., Greene et al. 2020). However, it is chal-

lenging to observationally constrain the occupation frac-

tion because of the lack of a complete sample of IMBHs

in dwarf galaxies. The active fraction is defined as a

fraction of galaxies hosting actively mass-accreting black

holes, providing a lower limit of the occupation fraction.

Compared to the occupation fraction, the active fraction

is more easily obtained through AGN surveys. We mea-

sure the BHMF of AGNs across a wide dynamic range,

including the intermediate-mass regime (M• < 106M⊙),
with an overall precision of much less than 1 dex. Thus,

our sample is ideal for constraining the active fraction at

the low-mass end. In this section, we present the active

fractions of galaxies in the local volume.

First, we investigate the correlation between the black

hole mass and the total host galaxy mass. A number of

previous studies presented the black hole mass correla-

tion with bulge properties, focusing on relatively mas-

sive galaxies (e.g., Kormendy & Ho 2013; Woo et al.

2013). However, the bulge properties cannot trace the

total stellar mass reliably due to the diverse range of

the bulge-to-total stellar mass ratio (e.g., Khochfar et al.

2011).

For low-mass galaxies, Reines & Volonteri (2015, see

also 2019) reported a broad correlation between the

black hole mass and the total stellar mass based on 271

local AGNs, including a number of IMBHs. In their

study, the total stellar mass was estimated based on the

color-dependent mass-to-light ratio from Zibetti et al.

(2009). We use this sample for our analysis after up-

dating single-epoch black hole masses based on the new

estimator Eq. 21). Note that the previous single-epoch

mass of IMBHs could be overestimated by 0.2∼0.5 dex

(see the discussion by Cho et al. 2023). Thus, we re-

determine the black hole mass of 255 AGNs in their

sample. In addition, we adopt the reverberation mass

of NGC 4395 from Cho et al. (2021).

Using this sample, we obtain theM•−M⋆,total relation

as:

log10
M•
M⊙

= (7.20± 0.08) + (1.11± 0.12) log10
M⋆,total

1011M⊙

(39)
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with an rms scatter of 0.61 dex (see Figure 8).

Second, we estimate the active fraction as follows. We

translate the BHMF to the corresponding mass function

as a function of stellar mass using Eq. 39 as:

ϕ(M∗) d log10 M∗ = ϕ(M•) d log10 M•. (40)

Then, the translated MF is convolved with a Gaussian

kernel with a width of 0.61 dex, which is the rms scatter

of M•−M⋆,total relation, to obtain the mass function of

active galaxies. Dividing this by a galaxy mass function

yields the active fraction. We adopt the galaxy mass

function from Weigel et al. (2016).

In addition, we consider two factors that may affect

the active fraction. First, we assume a type 1 fraction

(ftype1), which is the fraction of type 1 AGNs among

all AGNs. Since we use type 1 AGNs to derive the

BHMF, the active fraction based on this BHMF only

counts type 1 AGNs. Thus, we overcome this limitation

by dividing the active fraction of type 1 AGNs by the

type 1 fraction, obtaining the total active fraction. Pre-

vious studies suggest that the type 1 fraction increases

with increasing black hole mass. For instance, Lu et al.

(2010) reported that the type 1 fraction is ∼20% for

M• < 108M⊙ and ∼30% for M• > 108M⊙. Similarly,

Oh et al. (2015) found the type 1 fraction increases from

∼20% at M• ∼ 106M⊙ to ∼60% at M• ∼ 109M⊙. In

contrast, Moran et al. (2014) found only two type 1
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Figure 9. The active fraction of galaxies based on our
BHMF. The x-axis is the total stellar mass M⋆ or corre-
sponding black hole mass M• based on Eq. 39. The solid
blue line is based on the type 1 BHMF, with its 1-σ uncer-
tainty denoted with dashed lines. The total active fraction,
assuming type 1 fractions between 0.07 and 0.2, is shown as
a hatched region. For comparison, the active fractions from
Gallo et al. (2010, beige shade) and Pacucci et al. (2021, ma-
genta line) are presented.

AGNs out of 28 AGNs in dwarf galaxies, correspond-

ing to ftype1 ∼7%. Since we expect the type 1 fraction

to be a function of the host galaxy mass or black hole

mass, we assume the upper and lower limits of the type

1 fraction as 20% and 7%, respectively.

We find the active fraction of type 1 AGNs is larger

than ∼3% for massive galaxies with M⋆ > 1010M⊙ as

shown in In Figure 9. We also present the active fraction

of all AGNs (blue-shaded region), using the upper and

lower limits of the type 1 fraction (i.e., 20% and 7%, re-

spectively), constraining the active fraction of all AGNs

as 40% to 15% for massive galaxies. In contrast, the

active fraction decreases for lower-mass galaxies, partic-

ularly at M⋆ < 109.5M⊙. At the low end of stellar mass

(M⋆ = 108M⊙), the active fraction is ∼2%, even with a

lower limit of the type 1 fraction of 7%.

Our results are broadly consistent with the previous

study based on deep X-ray observations by Gallo et al.

(2010), who reported the active fraction to be 24%-34%

on average, varying from 0.7% to 87% depending on the

host galaxy mass. Note that they used very low Ed-

dington ratio AGNs (λ < −3) for deriving the active

fraction, while the lower limit of the Eddington ratio is



15

λ ≥ −3 in our sample. Gallo et al. (2010) described

that the decreasing trend of the active fraction with the

decreasing host galaxy mass was caused by the fact that

the fixed X-ray luminosity limit of their survey corre-

sponds to a higher Eddington ratio for lower-mass black

holes in lower-mass galaxies. Nevertheless, their average

active fraction of 24%-34% is a rough approximation for

the active fraction. If we apply the lower and upper lim-

its of the type 1 fraction (7% and 20%) to their active

fraction, then we obtain the active fraction of type 1

AGNs as 1.68%-6.8%. A more recent study by Ananna

et al. (2022) based on the X-ray luminosity reported the

active fraction of 10-16% for AGNs with λ > −3 AGNs

with 106.5 ≤ M•/M⊙ ≤ 1010.5. In the case of type 1

AGNs with λ > −3, they found the active fraction to be

∼4% (see Figure 13 in Ananna et al. 2022). Thus, our

result of ∼3% active fraction based on type 1 AGNs is

consistent with both studies.

Pacucci et al. (2021) constrained the active fraction of

galaxies with M⋆ < 1010M⊙, using AGNs with λ > −4,

by adopting simple assumptions on the accretion effi-

ciency. They predicted 2%-20% of active fraction, with

an increasing trend with host galaxy mass, which is

broadly consistent with our result. However, the increas-

ing slope of their active fraction is shallower than ours,

but consistent with the range of active fraction that we

constrained with the upper and lower limits of the type

1 fraction. Their shallower slope can be explained with a

varying type 1 fraction between dwarf galaxies (Moran

et al. 2014) and the more massive galaxies (Lu et al.

2010; Oh et al. 2015). If the broad-line region is less

common in active IMBHs, then the type 1 fraction can

be smaller for IMBHs.

5.2. Black Hole Occupation Fraction

We derive the black hole occupation fraction from the

active fraction by assuming a duty cycle, which is the

fraction of active black holes among all black holes. We

adopt a constant duty cycle of 13%, which is an average

of 10% and 16% constrained based on a sample of AGNs

selected with X-ray by (Ananna et al. 2022). As done for

the active fraction, we also use two different fractions,

7% (Moran et al. 2014) and 20% for type 1 AGNs(Lu

et al. 2010; Oh et al. 2015).

We present the occupation fraction in comparison

with the previous results in the literature in Figure 10.

The occupation fraction is close to 1 for galaxies with

M⋆ ≳ 109.5M⊙. This is consistent with the expectation

that all massive galaxies host SMBHs (e.g., Rees 1984;

Kormendy & Richstone 1995). The occupation fraction

departs from unity for galaxies with M⋆ ≲ 109.5M⊙, be-
comes 0.5 for galaxies with M⋆ ∼ 108.5M⊙-109M⊙, and
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Figure 10. The black hole occupation fraction of galaxies,
obtained by assuming type 1 fractions between 7% and 20%
and a duty cycle of 13%, is shown as a hatched region. The
x-axis is identical to Figure 9. The occupation fractions from
the literature, as discussed in § 5.2 and § 5.3, are presented
in colored lines and a shaded region.

reduces to ∼0.1 for dwarf galaxies with M⋆ ∼ 108M⊙.
Our result is broadly consistent with the occupation

fraction reported by Miller et al. (2015) based on the

X-ray detection, supporting the validity of the assump-

tions involved in the calculation of occupation fraction.

5.3. Comparison with the seed scenarios

We compare the occupation fraction with the theoret-

ical predictions based on heavy and light seed models

in the literature in Figure 10. For the heavy seed sce-

nario, we adopt the occupation fraction by Bellovary

et al. (2019), which was calculated based on a cosmo-

logical zoom-in simulation. For the light seed scenario,

we use a couple of occupation fractions by Ricarte &

Natarajan (2018, see Figure 5 of Greene et al. 2020),

which were calculated with two different assumptions

on the accretion rate.

The occupation fractions of dwarf galaxies (M⋆ <

109M⊙), predicted from the heavy seed model

(Bellovary et al. 2019) or from the optimistic light seed

model (Ricarte & Natarajan 2018, MS), are larger than

the occupation fraction we found. On the contrary, the

pessimistic light seed model (Ricarte & Natarajan 2018,

PL) is far smaller than our occupation fraction.

Given the large uncertainty of the occupation fraction,

it is difficult to discriminate between different seed sce-
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narios. The uncertainty arises largely from the assump-

tions on the activity of black holes, i.e., the duty cycle

and the type 1 fraction, that we used to construct the

occupation fraction. Therefore, it is necessary to quan-

tify the activity of IMBHs in detail, to better constrain

the occupation fraction.

5.4. Implications on the future surveys

The BHMF derived in § 4 can be used for estimating

the number of AGNs expected in a specific survey, based

on Eq. 19 along with the sensitivity function of the sur-

vey. In this section, we discuss the number of IMBHs

(104M⊙ < M• < 106M⊙) expected from future surveys.

For instance, the Vera C. Rubin Observatory Legacy

Survey of Space and Time (LSST, Ivezić et al. 2019)

covers an area of 18,000 deg2 in the sky. Its limiting

magnitude in r-band is 24.7 in a single visit and 27.5

in the final co-added survey, while objects with r < 16

would saturate. Converting these magnitudes with Eq. 1

and constructing a simple tophat-like selection function,

we expect that ∼500,000 active IMBHs within z < 0.35

would be detected in a single visit and ∼2 million active

IMBHs in the final survey.

One of the promising future all-sky surveys is

SPHEREx (Doré et al. 2014), which will cover all-sky

with a depth of 18.5 AB-mag and 100 deg2 area with

a depth of ∼22 AB-mag over the wavelength range of

0.75-5µm (Doré et al. 2018). While Hα emissions of

AGNs at z ≥ 0.143 can be detected in the survey, AGNs

at lower redshift can be detected via alternative signa-

tures, such as Paα. Considering that the flux of Paα

line is dimmer than that of Hα by a factor of 10 in type

1 AGNs (Netzer 1990), we can calculate the Paα flux

for given λ. On the other hand, AB magnitude can

be derived by averaging the Paα flux over the spectral

resolving power R = 41 of the SPHEREx at low wave-

lengths. Comparing these, we derive the 5σ limiting

flux of Paα to be 5.6×10−14 erg s−1 cm−2 for all-sky and

2.2×10−15 erg s−1 cm−2 for 100 sq.deg. area. From this,

we expect the number of active IMBHs detected with

Paα within z < 0.143 volume, to be ∼25 for 100 sq.deg.

area and ∼100 for all-sky, without considering Galactic

obstruction.

5.5. Summary

In this paper, we derived the mass function and Ed-

dington ratio distribution function of type 1 AGNs with

masses down to 104M⊙, using the local AGNs in the

SDSS DR7. By constructing the selection function

based on the detection probability of the broad Hα line

fluxes, and applying maximum posterior modeling, we

obtained the intrinsic and simulated density functions.

We summarize the main results as follows.

1. The black hole mass function peaks at M• ≃
106M⊙ while it is flat or slightly decreasing for

intermediate-mass black holes, as similarly re-

ported in the literature.

2. The Eddington ratio distribution function peaks

near 1%-10% and follows a Schechter-like or a bro-

ken power-law function, exponentially decreasing

as the Eddington ratio exceeds 10%. This trend is

in contrast to the monotonically decreasing func-

tion reported in the literature, many of which used

X-ray data to constrain the Eddington ratio dis-

tribution function.

3. The type 1 active fraction is ∼3% for galaxies

with M⋆ > 1010M⊙. Adopting that the type

1 AGNs constitute 7%-20% of all AGNs with

M• < 108M⊙, we constrain the active fraction

as 40%-15%. In the case of dwarf galaxies with

M⋆ ∼ 108M⊙, the active fraction is ∼2% even

with a lower limit of the type 1 fraction of 7%.

4. We constrain the black hole occupation fraction

using the derived active fraction. For dwarf galax-

ies with M⋆ ∼ 108.5M⊙-109M⊙, we find the oc-

cupation fraction is 50%, which is consistent with

the constraints based on the X-ray detections in

the literature.
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Doré, O., Bock, J., Ashby, M., et al. 2014, arXiv e-prints,

arXiv:1412.4872, doi: 10.48550/arXiv.1412.4872
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