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Toward an improved understanding of the role of quantum information in nuclei and exotic matter,
we examine the magic (non-stabilizerness) in low-energy strong interaction processes. As stabilizer
states can be prepared efficiently using classical computers, and include classes of entangled states, it
is magic and fluctuations in magic, along with entanglement, that determine resource requirements
for quantum simulations. As a measure of fluctuations in magic induced by scattering, the “magic
power” of the S-matrix is introduced. Using experimentally-determined scattering phase shifts and
mixing parameters, the magic power in nucleon-nucleon and hyperon-nucleon scattering, along with
the magic in the deuteron, are found to exhibit interesting features. The Σ−-baryon is identified as
a potential candidate catalyst for enhanced spreading of magic and entanglement in dense matter,
depending on in-medium decoherence.

There has been tremendous progress in analyzing static
and dynamical properties of quantum few-body and
many-body systems from the point of view of quantum
information. One focus has been the characterization of
entanglement features of such systems, to gain a better
understanding of this phenomenon, its role in physical
processes and connections to the fundamental laws of
nature (for recent reviews, see Refs. [1–6]). In nuclear
physics, this includes studies of entanglement at various
energy scales, from systems relevant to QCD and high-
energy phenomena (for example, Refs. [7–20]), to investi-
gations of entanglement in few-baryon scattering [21–30],
to the structure of nuclei and nuclear models [31–49], as
well as dense neutrino systems (for example Refs. [50–
57]).

Importantly, without a classical analog, entanglement
naturally appears as a key concept separating classical
and quantum computations. This has led to the de-
velopment and re-interpretation of a range of methods
that reorganize quantum many-body (QMB) problems
around entanglement. One major example are tensor-
network methods (for a recent review, see Ref. [58]), such
as the density-matrix renormalization group [59], with
various adaptations in nuclear physics [32, 37, 60–70]. In
a related spirit, Refs. [31, 71] introduced a reduced-basis
method utilizing low proton-neutron entanglement. Ap-
proaches reorganizing entanglement via variational prin-
ciples, with benefits for classical-quantum simulations of
nuclear systems have also been developed [34, 72].

On the other hand, it is known from the Gottesman-
Knill theorem [73] that stabilizer states, which include
classes of entangled states, can be prepared efficiently

∗ crobin@physik.uni-bielefeld.de
† mjs5@uw.edu; On leave from the Institute for Nuclear Theory.

using classical computers. As such, entanglement mea-
sures alone are insufficient to assess the quantum re-
source requirements for simulating many-body systems,
and should be supplemented with measures of non-
stabilizerness, or “magic” [74–79].

In this article, we initiate studies of magic in nuclei
and dense matter by examining its role in low-energy
nucleon-nucleon (NN) and hyperon-nucleon (YN) scat-
tering. This builds upon connections between entangle-
ment suppression and emergent symmetries of the strong
interactions [21, 22, 24, 40, 80], and works in other are-
nas [7, 17, 23]. Building upon the work of Leone, Oliviero
and Hamma in defining the magic power of a unitary
operator [81], we investigate the magic power of the S-
matrix in two-particle scattering channels that can be
mapped to one and two qubits. We find that magic pat-
terns do not always follow entanglement patterns, in par-
ticular, there are certain states that exhibit large entan-
glement and zero magic in specific energy regions, sug-
gesting that the computational complexity of these pro-
cesses could be energy dependent. Interestingly, we find
that the magic in the deuteron (induced by the tensor
force) takes approximately the same value as the maxi-
mum magic power of the NN S-matrix. While the magic
power in ΛN scattering is found to remain small over a
large range of energies, the magic power in Σ−n scat-
tering rapidly reaches its maximum value which persists
up to high energies. This raises the intriguing possibility
that Σ−s may catalyze the growth of entanglement and
magic in dense exotic matter.

Formally, a n-qubit pure state |Ψ⟩ is a stabilizer state
if there exists a subgroup S(|Ψ⟩) of the Pauli group
Gn = {φ P̂1⊗P̂2⊗...⊗P̂n}, where P̂i ∈ {1, σx, σy, σz} and
φ ∈ {±1, ±i}, with |S(|Ψ⟩)| = 2n elements, such that
P̂ |Ψ⟩ = |Ψ⟩ for all P̂ ∈ S(|Ψ⟩). The subgroup S(|Ψ⟩)
is called the stabilizer group of |Ψ⟩ and is Abelian [82–
85]. Stabilizer states can be prepared with stabilizer cir-
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cuits, i.e. using Hadamard (H), phase (S) and CNOT
gates (see App. A). These Clifford gates alone are in-
sufficient for universal quantum computation, which can
be realized by including the non-Clifford T-gate. Non-
stabilizer states, or "magic states", which a priori can-
not be efficiently prepared classically, can be prepared us-
ing T-gates and Clifford gates. Therefore, the resources
required for quantum simulations are given in terms of
T-gate counts rather than CNOT-gate counts (while the
later is currently relevant for the depth of quantum cir-
cuits that can be executed on Noisy Intermediate Scale
Quantum (NISQ)-era [86] hardware). While the formal-
ism of stabilizer states has originally been developed for
quantum error correction [82–84], in the context of QMB
physics, magic, together with entanglement, dictates the
computational complexity.

Measures of magic based on Rényi entropies have been
introduced [81, 87] building on some of the mathemat-
ical underpinnings from Refs. [88, 89], and a follow-up
protocol to measure magic on a quantum processor was
proposed and demonstrated in Ref. [90]. Investigations
of magic in matrix-product states have been performed
in Refs. [91–94]. Some recent works developed compu-
tations of magic in the Ising model [95, 96], in two-
dimensional lattice gauge theories [97], and in poten-
tial simulations of quantum gravity [98]. Also very re-
cently, the use of doped stabilizer states has been pro-
posed to represent energy eigenstates of certain QMB
systems [99, 100], and to develop efficient algorithms
for their classical simulations. Furthermore, it has been
shown in a particular system that a phase transition in
the scaling of magic occurs at a different measurement
rate to that of entanglement [101].

Magic in a n-qubit pure state can be quantified con-
sidering a general expansion of ρ̂ = |Ψ⟩ ⟨Ψ| in term of
n-qubit Pauli strings

ρ̂ =
1

d

∑
P̂∈G̃n

cP P̂ , (1)

where d = 2n, G̃n is the group of Pauli strings with phases
+1, and cP = Tr(ρ̂P̂ ) = ⟨Ψ|P̂ |Ψ⟩. As shown in Ref. [81],
ΞP ≡ c2P /d is a probability distribution which can be in-
terpreted as the probability for ρ̂ to be in P̂ . The central
step in quantifying magic comes from the demonstration
that |Ψ⟩ is a stabilizer state if and only if the coefficients
cP = ±1 for d mutually commuting Pauli strings [89]
(and cP = 0 for the remaining d(d−1) strings), and thus,
ΞP = 1/d or 0. Consequently, Rényi entropies defined as

Mα(|Ψ⟩) = − log d+
1

1− α
log

(∑
P

Ξα
P

)
(2)

provide a measure of magic, which vanishes for stabilizer
states due to the added offset of − log d [81]. While the
present study can be carried out using any Rényi entropy
convention, for consistency with previous works [21], we

focus on the linear entropy (1-Rényi entropy, or Shannon
entropy, where the log is expanded to linear order)

M(|Ψ⟩) ≡ Mlin(|Ψ⟩) = 1− d
∑
P

Ξ2
P , (3)

which also vanishes for stabilizer states.
The starting point of our analysis of magic in scat-

tering is to recognize that the action of the S-matrix on
an initial stabilizer state can produce a final state that
has magic. A difference between entanglement and magic
in this setting is that one qubit can be in a state with
magic, but is obviously unentangled. To describe magic
in scattering processes, we introduce the magic power of
the S-matrix, M(Ŝ), as the average magic induced by the
operator Ŝ on all n-qubit stabilizer states |Ψi⟩:

M(Ŝ) ≡ 1

Nss

Nss∑
i=1

M
(
Ŝ |Ψi⟩

)
, (4)

where Nss denotes the total number of n-qubit stabilizer
states. This definition is analogous to the definition of the
entanglement power of the S-matrix [21] (a special case
of the entangling power of a given unitary operator [102,
103]). It is well known that a one-qubit system has Nss =
6 stabilizer states, corresponding to the eigenstates of the
Pauli operators σx, σy and σz (see App. B),

|0⟩ , |1⟩ , |+⟩ = |0⟩+ |1⟩√
2

, |−⟩ = |0⟩ − |1⟩√
2

,

|+i⟩ = |0⟩+ i |1⟩√
2

, |−i⟩ = |0⟩ − i |1⟩√
2

. (5)

Two-qubit systems have 36 stabilizer states correspond-
ing to tensor products of one-qubit stabilizer states, and
24 entangled stabilizers obtained by acting with CNOT
gates (see App. B) which amount to a total of 60 stabi-
lizer states. This can be generalized to n qubits using a
recursive formula: Nss(n) = 2(2n + 1)Nss(n− 1) [85].

Similarly, the entanglement power of the S-matrix [21]
can be redefined to computing the average entanglement
induced by Ŝ over the tensor-product n-qubit stabilizer
states |Ψi⟩:

E(Ŝ) ≡ 1

N TP
ss

NTP
ss∑

i=1

E
(
ρ
(1)
i (Ŝ)

)
, (6)

where N TP
ss is the number of tensor-product stabilizer

states, and ρ
(1)
i (Ŝ) = Tr2

[
ρ
(12)
i (Ŝ)

]
is the outgoing re-

duced density matrix for particle 1, obtained by tracing
the full outgoing density matrix ρ(12)i (Ŝ) = Ŝ |Ψi⟩ ⟨Ψi| Ŝ†

over particle 2. This definition recovers the results ob-
tained by continuous integration over spin orientations of
initial tensor-product states [21].

We first consider neutron-proton (np) scattering in
the J = 1 3S1-3D1 coupled channels, which contains
the deuteron bound state. Suppressing individual spin
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indices, this is a two-component system which can be
mapped to one qubit with basis states |3S1⟩ ≡ |0⟩ and
|3D1⟩ ≡ |1⟩. With this mapping, the S-matrix, using the
Stapp parametrization [104], is:

S(J=1) =

(
eiδ0 0

0 eiδ2

)(
cos 2ϵ1 i sin 2ϵ1
i sin 2ϵ1 cos 2ϵ1

)

×

(
eiδ0 0

0 eiδ2

)
, (7)

where δ0 and δ2 are the phase shifts for the 3S1 and 3D1

waves, respectively, and ϵ1 is the mixing angle (for an-
other parametrization, see App. C). Acting on each of
the six stabilizer states associated with one qubit given
in Eq. (5), the magic power of the S-matrix determined
using Eq. (4) is

M(Ŝ(J=1)) =
1

6

[
sin2(8ϵ1) + cos8(2ϵ1) sin

2(4∆δ)

+
7

4
sin4(4ϵ1) sin

2(2∆δ)
]
, (8)

where ∆δ ≡ δ0 − δ2. Figure 1 shows M(Ŝ(J=1)) using

FIG. 1. The magic power M(Ŝ(J=1)) in np scattering in
the 3S1-3D1 coupled channels determined using Eq. (4), as a
function of laboratory momentum plab. The blue curve shows
the full result using the Nijm93 phase-shift analysis [105, 106],
while the orange curve corresponds to the limit ϵ1 = δ2 = 0.

δ0, δ2, ϵ1 from the Nijm93 fit to np scattering data [106]
as a function of momentum in the laboratory frame 1.
The magic power exhibits significant structure over a
small energy range near threshold, due to the rapidly
varying phase shifts near unitarity. The minima of the
magic power are found near plab ≃ 0, 64, 187, ...MeV, and
maxima of ≃ 0.17 near plab ≃ 31, 110, 330... MeV. These
maximum values are to be compared with the maximum
possible value for one-qubit magic, which is 1/3.

1 The quality of the experimental NN scattering data highly con-
strains phenomenological phase-shift analyses, thus we restrict
ourselves to one such NN potential, Nijm93 [105], for demon-
strative purposes.

It is interesting to calculate the magic in the deuteron,
the loosely-bound J = 1 np ground state in the 3S1-
3D1 coupled channels, using the mapping described above
|ψ⟩deuteron = AS |3S1⟩+AD |3D1⟩. The Nijm93 potential
provides a D-wave component AD ≃ 0.24, corresponding
to a probability of ∼ 5.8% [105]. Using this value, the
linear magic in Eq. (3) takes the value M(|ψ⟩deuteron) ≃
0.17, which is intriguingly close to the maxima of magic
power in this channel shown in Fig. 1. This suggests that
there may be a connection between the magic power in
the continuum and the magic in bound states, but this is
merely speculation. For the deuteron, the magic is gener-
ated by the tensor force that provides the mixing between
3S1 and 3D1 channels. The maximum value Mmax = 0.25
(for a real wave function) would have been obtained for
a nearby D-state amplitude of AD = sin π

8 and hence a
probability of ≃ 14.6%.

Let us now turn to the magic and entanglement in
the spin-sector of S-wave NN scattering (and neglect the
mixing with the D-wave). The nucleons can be reduced
to their spin degrees of freedom, and mapped onto two
qubits, with basis states |0⟩N = |↑⟩N and |1⟩N = |↓⟩N
(N= n, p). The S-matrix in these channels is,

Ŝ =
1

4

(
3 e2iδ1 + e2iδ0

)
1̂+

1

4

(
e2iδ1 − e2iδ0

)
σ̂.σ̂ , (9)

which is a combination of the identity and spin-exchange
operator (SWAP gate) [21]. In Eq. (9), δ0 and δ1 are the
phase shifts associated with the 1S0 and 3S1 channels,
respectively. Using Eq. (4) and Eq. (6) to compute the
magic power and entanglement power of the S-matrix,
we obtain

M(Ŝ) =
3

20

(
3 + cos(4∆δ)

)
sin2(2∆δ) , (10)

E(Ŝ) = 1

6
sin2(2∆δ) , (11)

where ∆δ ≡ δ1 − δ0. Interestingly, the magic power
differs in form from the entanglement power by the extra
cosine term. Both E(Ŝ) and M(Ŝ) vanish for ∆δ = kπ/2
(k integer), which is encountered in the case of SU(4)
symmetry (δ1 = δ0) that emerges in the large-Nc limit of
QCD [107], and for some special fixed points forming the
Klein group [21]. Both present maxima M(Ŝ)max = 0.3

and E(Ŝ)max = 1/6 ≃ 0.167 at ∆δ = (k + 1/2)π/2. The
magic power, however, presents a small plateau around
this value. The magic and entanglement power of the
S-matrix computed with Nijm93 phase shifts are shown
in Fig. 2 (black curves). Interestingly, it is seen that
M(Ŝ) overall is larger than E(Ŝ) by a factor ≃ 2 over
the full energy range. M(Ŝ) roughly follows the trend of
E(Ŝ), except in the region around plab ≃ 100−200 where
M(Ŝ) presents a plateau. To underpin the origin of this
plateau we have examined the individual contribution
M(Ŝ |Ψi⟩) of each initial stabilizer state |Ψi⟩. We find
that each of them can be classified in one of three groups
of states which contribute in the same way to the magic
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FIG. 2. The magic power M(Ŝ) (left panel) and entanglement
power E(Ŝ) (right panel) of the S-matrix in the spin degrees
of freedom in np scattering as a function of the momentum
plab in the laboratory frame. The phase shifts are those from
the Nijm93 parametrization [105], obtained from Ref. [106].
The groups i′ are restricted to the tensor-product states of
groups i, respectively.

or entanglement power. These groups are detailed in
App. D, and each contain tensor-product and entangled
states. Their contributions are shown with green, blue
and red curves in Fig. 2. It is seen that the stabilizers
that generate the largest amount of entanglement do
not coincide with those generating the largest magic.
In particular, "group 2" presents a distinct behaviour
around plab ≃ 128 MeV (which corresponds to p∗ ≃ 64
MeV in the center-of-mass frame), where the magic
cancels but the entanglement takes its maximal value.
The physical meaning of this dip in the magic remains
unclear, but coincidentally, this region corresponds to
the start of the t-channel cut at p∗ = mπ/2, beyond
which the effective range expansion is no longer valid.
Conversely, there are no energies at which the system is
unentangled and magic.

The above analysis is also applied to YN scattering.
Specifically, we consider Σ−n and Λp which may have
importance for the structure of dense matter, as formed
in core-collapse supernova (for a recent discussions, see
Ref. [108–110]). For these processes, the phase shifts de-
rived from chiral effective field theory (χEFT)[111] at
next-to-next-to leading order (N2LO) are adopted [112]
(for a comparison to results with phenomenological phase
shifts, see App. E). Figure 3 shows the resulting magic
and entanglement power of the Λp and Σ−n S-matrices.
We observe significant differences compared to the np
channel, due to dissimilarities in the behavior of the
phase shifts. In particular, ∆δ varies only slowly in Σ−n
scattering, and takes values close to π/4 over an extended
range of energies, which makes M(Ŝ) and E(Ŝ) almost
constantly maximal. Conversely, in Λp scattering, the

FIG. 3. Magic power M(Ŝ) (left panel) and entanglement
power E(Ŝ) (right panel) in Σ−n and Λp scattering, obtained
using N2LO-χEFT phase shifts from Ref. [112]. We have
assumed isospin symmetry between Σ+p and Σ−n, and ne-
glected Coulomb interactions. The uncertainty bands rep-
resent the maximum and minimum values in magic and en-
tanglement derived from the N2LO phase-shift uncertainty
bands [112].

phase shifts δ0 and δ1 take comparable values, which
largely suppresses magic and entanglement powers. This
may be interpreted as due to the nature of the spin of
the hyperon. In the case of the Λ, the spin is carried
mostly by the s-quark, and the magic and entanglement
power suggest that it is largely decoupled from the other
spin dynamics. In contrast, the spin of the Σ− is car-
ried by both the s-quark and the d-quarks, which appear
to be strongly coupled to the neutron, and able to pro-
vide substantial fluctuations in entanglement and magic
over a wide range of energies. We speculate that this
could provide a mechanism to grow and spread magic
and entanglement in dense matter, via Σ−-catalysis (for
a three-qubit analysis of associated mixed-state magic,
see App. F). Of course, critical to this discussion is the
assumed quantum coherence between scatters, which is
sure to be degraded in a non-equilibrium astrophysical
setting. The degree of coherence remains to be deter-
mined.

Preparing and evolving one-qubit and two-qubit wave-
functions is easy to do with a classical computer. How-
ever one may wonder if, for example, the one-qubit magic
computed in the 3S1-3D1 coupled channels reflects the
long-distance magic, and thus the complexity of simulat-
ing np scattering and the deuteron at the level of quarks
and gluons using lattice QCD techniques (see, for exam-
ple, Refs. [113–125]). It would be remarkable if it did, and
one of many challenges that remain is to understand how
magic and entanglement evolve through the confinement
scale [15]. Our study indicates that the computational
complexity for simulating NN scattering depends upon
the energy. Performing such simulations at parameters
corresponding to vanishing magic would then be com-
putationally less demanding (and efficient for classical
computers) than at points with local maxima in magic.
To further address this question, more systematic stud-
ies of the scaling of magic with system sizes, and of how
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magic is affected by qubit mappings to fundamental or
emergent degrees of freedom, are needed.

To summarize, as a step towards investigating the role
of magic in nuclear phenomena, and the associated com-
putational complexity of their simulation, we have con-
sidered the magic power of the S-matrix to explore fluctu-
ations in magic induced by low-energy NN and YN scat-
tering. Using available phase-shift analyses, including
N2LO YN interactions in a chiral expansion, the tensor
force is found to be responsible for interesting behavior
of the magic in the 3S1-3D1 NN coupled channels, and
the spin-spin interaction induces similarly interesting be-
havior in the spin degrees of freedom in the 1S0 and 3S1

channels. There is striking behavior in the magic power
of the Σ−n S-matrix, being approximately maximal and
independent of energy over a large interval, that could
be relevant for evolution of exotic matter.

Systems that have magic without entanglement, or en-
tanglement without magic, can be prepared efficiently
using classical computers. Therefore, both magic and en-
tanglement are important to consider in estimating the
resources required for quantum simulations, including for
simulations of ordinary or exotic cold-QCD systems.
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Appendix A: Gates

Here we present the gates used in the discussions in the main text. Quantum circuits that can be efficiently simulated
using classical computers are those involving only Clifford gates, The single-qubit H-gate and S-gate, and the two-
qubit CNOTij-gate (a two-qubit control-X entangling gate where i denotes the control qubit and j the target qubit),
given by, for example,

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, CNOT12 =

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (A1)

Repeated applications of this gate set { H, S, CNOTij } to a n-qubit tensor-product state will generate the complete
set of stabilizer states. Inclusion of the T-gate,

T =

(
1 0
0 eiπ/4

)
, (A2)

yields a complete gate set for universal quantum computation, which that repeated application of { H, T, CNOTij }
provides access to any circuit that can be simulated using a quantum computer. As T-gates are a costly resource, one
typically thinks about the gate set { H, S, CNOTij , T }, but keeping in mind that T2=S.

Appendix B: Stabilizer States

As stated in the main text, a n-qubit pure state |Ψ⟩ is said to be a stabilizer state if there exists a subgroup S(|Ψ⟩)
of the Pauli group Gn = {φ P̂1 ⊗ P̂2 ⊗ ... ⊗ P̂n}, where P̂i ∈ {1, σx, σy, σz} and φ ∈ {±1, ±i}, with |S(|Ψ⟩)| = 2n

elements, such that P̂ |Ψ⟩ = |Ψ⟩ for all P̂ ∈ S(|Ψ⟩) ⊂ Gn. The stabilizers associated with a given system are
conveniently determined by a Pauli decomposition of the density matrix,

ρ = |ψ⟩⟨ψ| =
1

d

∑
P∈G̃n

cP P̂ , cP = Tr
[
ρ.P̂
]
, (B1)

where G̃n is the group of Pauli strings with phases φ = +1 only, d = 2n and 1
d

∑
P c

2
P = 1. The stabilizers are

associated with the set of coefficients containing d coefficients cP with values ±1, and the others with values cP = 0.
A brute force way to generate the stabilizer states for an n-qubit state is to start in the |0⟩⊗n tensor-product state,
exhaustively apply the Clifford gates, { H, S, CNOTij }, in all possible ways, and retain the distinct states that result.
This method works well for small systems, but the number of states grows exponentially with increasing n [85] and
soon becomes unmanageable. In that case, statistical sampling over such circuits provides a path forward.

For one qubit (with d = 2), there are 6 stabilizer states that have 2 Pauli operators satisfying P̂ |Ψ⟩ = |Ψ⟩, which
are listed in Table I. For two qubits (with d = 4), there are 4 stabilizers for each of the 60 stabilizer states given in

P |ψ⟩
1̂, Ẑ |0⟩
1̂, -Ẑ |1⟩
1̂, X̂ |+⟩ ≡ 1√

2
(|0⟩+ |1⟩)

1̂, -X̂ |−⟩ ≡ 1√
2
(|0⟩ − |1⟩)

1̂, Ŷ |+i⟩ ≡ 1√
2
(|0⟩+ i|1⟩)

1̂, -Ŷ |−i⟩ ≡ 1√
2
(|0⟩ − i|1⟩)

TABLE I. One-qubit stabilizer states and their stabilizers.

Table II. 36 of these states are tensor products formed from two of the one-qubit stabilizer states, while the remaining
24 are entangled states of the two qubits. Finally, for three qubits, there are 1080 stabilizer states (which are given
in Ref. [85]), and for four qubits there are 36720 stabilizer states [85]].
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state |00⟩ |01⟩ |10⟩ |11⟩ state |00⟩ |01⟩ |10⟩ |11⟩
1 1 1 1 1 37 0 1 1 0
2 1 -1 1 -1 38 1 0 0 -1
3 1 1 -1 -1 39 1 0 0 1
4 1 -1 -1 1 40 0 1 -1 0
5 1 1 i i 41 1 0 0 i
6 1 -1 i -i 42 0 1 i 0
7 1 1 -i -i 43 0 1 -i 0
8 1 -1 -i i 44 1 0 0 -i
9 1 1 0 0 45 1 1 1 -1
10 1 -1 0 0 46 1 1 -1 1
11 0 0 1 1 47 1 -1 1 1
12 0 0 1 -1 48 1 -1 -1 -1
13 1 i 1 i 49 1 i 1 -i
14 1 -i 1 -i 50 1 i -1 i
15 1 i -1 -i 51 1 -i 1 i
16 1 -i -1 i 52 1 -i -1 -i
17 1 i i -1 53 1 1 i -i
18 1 -i i 1 54 1 1 -i i
19 1 i -i 1 55 1 -1 i i
20 1 -i -i -1 56 1 -1 -i -i
21 1 i 0 0 57 1 i i 1
22 1 -i 0 0 58 1 i -i -1
23 0 0 1 i 59 1 -i i -1
24 0 0 1 -i 60 1 -i -i 1
25 1 0 1 0
26 0 1 0 1
27 1 0 -1 0
28 0 1 0 -1
29 1 0 i 0
30 0 1 0 i
31 1 0 -i 0
32 0 1 0 -i
33 1 0 0 0
34 0 1 0 0
35 0 0 1 0
36 0 0 0 1

TABLE II. The complete set of 60 two-qubit stabilizer states. The left set are from the tensor product of one-qubit stabilizer
states, while the right set are entangled states. These states are (generally) unnormalized, and require coefficients of either 1
or 1√

2
or 1

2
.

Appendix C: Nucleon-Nucleon Coupled Channels in the Blatt-Biedenharn Parameterization [127]

The S-matrix for scattering in the 3S1 − 3D1 J = 1 coupled channels can be written in terms of two phase shifts and
one mixing angle. In the main text, the Stapp convention [104] was used to define the S-matrix, but others can be
used, for example, the Blatt-Biedenharn (BB) convention [127] (for a discussion, see Ref. [128]), defined by

Ŝ(J=1) =

(
cos ϵ1 − sin ϵ1
sin ϵ1 cos ϵ1

)(
e2iδ1α 0
0 e2iδ1β

)(
cos ϵ1 sin ϵ1
− sin ϵ1 cos ϵ1

)
. (C1)

The same procedure is used to determine the magic power of the S-matrix in this parameterization, using the stabilizer
states given in Eq. (5). The magic power of the BB convention, as defined in Eq. (4), is found to be

M(Ŝ(J=1)) =
1

384

[
(322 + 397 cos(2∆δ) + 206 cos(4∆δ) + 99 cos(6∆δ)) sin2 ∆δ

− 32 cos(16ϵ1) sin
8 ∆δ − 56 cos(8ϵ1) sin

4(2∆δ)
]
, (C2)

where ∆δ = δα − δβ . We see that M(Ŝ(J=1)) = 0 when ∆δ = 0, as expected, as the S-matrix becomes the identity,
and interestingly, the contribution from ϵ1 is suppressed by higher orders in ∆δ. Phenomenologically δβ , ϵ1 ∼ 0 at
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low energies, and in this limit the magic power and entangling power are,

M(Ŝ(J=1)) =
1

6
sin2(4δα) , E(Ŝ) =

1

4
sin2(4δα) . (C3)

Appendix D: Contributions from Stabilizer States

It is informative to examine the contributions M(Ŝ |Ψi⟩) of individual stabilizer states |Ψi⟩ to the magic power of the
S-matrix. In the case of np scattering in the coupled 3S1 − 3D1 channels (deuteron), which was mapped to one qubit,
there are contributions from the six stabilizer states in Table I. Their contributions to the magic power in Fig. 1 are
shown in Fig. 4. At low energies, the channels mix minimally, and the S-matrix is approximately diagonal. In that

FIG. 4. Contributions of the six one-qubit stabilizer states to the magic power M(Ŝ(J=1)) in np scattering in the J = 1

coupled 3S1-3D1 channels as a function of laboratory momentum plab, obtained with the Nijm93 phase shifts [105, 106].

limit, the stabilizer states |3S1⟩ ≡ |0⟩ and |3D1⟩ ≡ |1⟩ do not contribute magic, as they only acquire a global phase
during scattering, while the states |±⟩ and |±i⟩ contribute equally. For plab above ≃ 100 MeV (which corresponds to
a momentum p∗ ≃ 50 MeV in the center-of-mass frame) mixing to the 3D1 wave turns on. The stabilizer states |0⟩
and |1⟩ acquire non-vanishing magic during scattering, and the contributions from |±⟩ and |±i⟩ slightly separate.

As stated in the main text, in the case of NN and YN scattering in the S-wave channels (1S0 and 3S1), which was
mapped to two qubits, we found that the 60 stabilizers could be organized into groups of states which contribute
exactly in the same way to the magic power, or to the entanglement power, of the S-matrix. The contributions for
NN scattering were shown in Fig. 2 and those for YN scattering are shown in Figs. 5. The corresponding groups of
stabilizers are detailed below.

• Group 1 (shown in green in Figs. 2 and 5): this group contains the six tensor-product states where both qubits
are in the same state:

|0⟩ ⊗ |0⟩ , |1⟩ ⊗ |1⟩ , |+⟩ ⊗ |+⟩ , |−⟩ ⊗ |−⟩ , |+i⟩ ⊗ |+i⟩ , |−i⟩ ⊗ |−i⟩ , (D1)

which are states number 33, 36, 1 , 4, 17 and 20 in Table II, as well as ten entangled states7 (number 37, 38, 39,
41, 44, 45, 48, 55, 57 and 60 in Table II), which include the three spin-triplet Bell states, but not the singlet.
These stabilizers lead to outgoing states with no magic, the tensor-product ones also yield no entanglement after
scattering. This is true for both NN and YN scattering.

• Group 2 (shown in blue in Figs. 2 and 5): this group contains the six tensor-product stabilizer states which
combines the two eigenstates of the same Pauli operator

|0⟩ ⊗ |1⟩ , |1⟩ ⊗ |0⟩ , |+⟩ ⊗ |−⟩ , |−⟩ ⊗ |+⟩ , |+i⟩ ⊗ |−i⟩ , |−i⟩ ⊗ |+i⟩ , (D2)

which are states number 34, 35, 2, 3, 18 and 19 in Table II, as well as six entangled states (number 42, 43,
46, 47, 58 and 59 in Table II). These stabilizer states are particularly interesting in the case of pn and Σ−n
scattering, as they scatter into states with large entanglement and vanishing magic at certain energies. For Λp
scattering, entanglement and magic follow the same trend.

7 As a reminder, we only include the contributions of both un-
entangled (tensor-product) and entangled stabilizer states to the

magic power, while the entanglement power is only averaged over
unentangled stabilizer states, according to Eqs. (4) and (6).
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• Group 3 (shown in red in Figs. 2 and 5): these are all remaining stabilizer states. These scatter into states
presenting the largest magic, but smallest non-zero entanglement in pn and Σ−n scattering. Again for Λp
scattering, entanglement and magic display the same behaviour.

FIG. 5. Contributions of different stabilizers states to the magic power M(Ŝ) and entanglement power E(Ŝ) of the S-matrix
in Σ−n scattering (left two panels) and Λp scattering (right two panels). These results have been obtained using N2LO-χEFT
phase shifts from Ref. [112]. For the magic power, group-1 contains 16 states, group-2 contains 12 states and group-3 contains
32 states. For the entangling power, only the tensor-product stabilizer states of each group are included, (denoted with a
prime). Thus, group-1′ contains 6 states, group-2′ contains 6 states and group-3′ contains 24 states. We have assumed isospin
symmetry between Σ+p and Σ−n, and neglected Coulomb interactions. The uncertainty bands represent the maximum and
minimum values in magic and entanglement derived from the N2LO phase-shift uncertainty bands [112].

Appendix E: Comparison between Chiral-EFT and Phenomenological Phase Shifts

FIG. 6. The magic power M(Ŝ) and entanglement power E(Ŝ) for Σ−n scattering (left panels) and Λp scattering (right
panel) obtained from the phase shifts derived from χEFT of Ref. [112], and different parametrizations of the NSC97 phase
shifts [106] (the sign of the NSC97 3S1 phase shift has been flipped). We have assumed isospin symmetry between Σ+p and
Σ−n, and neglected Coulomb interactions. The uncertainty bands represent the maximum and minimum values in magic and
entanglement derived from the N2LO phase-shift uncertainty bands [112].

While the NN scattering phase shifts and mixing parameters are well constrained by experimental data, the same is
only partially true for YN and hyperon-hyperon scattering. Modern χEFT analyses of YN scattering, for instance the
N2LO results from Haidenbauer, Meißner, Nogga and Le [112], provide estimates of the uncertainties determined by
the expansion parameters of the EFT, defined at leading order in Ref. [111]. Phenomenological potential analyses of
the same experimental data sets typically do not provide such error estimates. In the case of the Nijmegen analyses,
this lack of error estimates is compensated for by an array of different potentials and fits, the NSC97a-f. For a
given observable the range of predictions from NSC97a-f provides an estimate of uncertainty in this phenomenological
analysis.

Our results for the magic power and entanglement power in Σ−n and ΛN that are presented in the main text are
derived from the N2LO χEFT analysis of Haidenbauer et al [112]. Here we compare these results and uncertainties from
the results obtained using the NSC97a-f, an analysis that was state-of-the-art, but constrained by less comprehensive
data sets, in 1997 [106]. As discussed in Refs. [112, 129, 130], the attractive nature of the phenomenological interactions
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in the ΣN (I = 3/2) 3S1 channel is inconsistent with recent Lattice QCD calculations [131, 132] and empirical
information from Σ−-formation reactions on nuclei [133], which point to a repulsive interaction. It has been noted
that either sign was found to be consistent in the analyses that led to NSC97a-f, and a choice was made in 1997, in
the absence of a definitive result, of an attractive interaction, but repulsive would have also been compatible. Recent
work on entanglement [40] uses these Σ−n phase shifts.

Figure 6 shows the magic power and entanglement power in the Σ−n and ΛN channels. According to the above
discussion, and for a meaningful comparison, the results in this figure have been obtained by changing the sign of the
NSC97a-f phase shifts. While the results in the Σ−n are consistent between the N2LO analysis and NSC97a-f up to
plab ∼ 400MeV, at which point NSC97a and NSC97b become inconsistent with the N2LO error band, the NSC97a-f
predictions in the ΛN channel show little resemblance to the N2L0 prediction and are well outside of the error band
over most of the energy range. In this channel, it is again the case that NSC97a and NSC97b are the least consistent.
The magic power and entanglement power in this channel are both small, resulting from substantial cancellations
between phase shifts, and this appears to be challenging for the NSC97a-f to capture with any precision, which we
attribute to the limited data sets available in 1997.

Appendix F: Σ−-Catalyzed Magic - Without Decoherence

In this appendix, we present a simple 3-qubit example of the Σ− generating (catalyzing) magic between two neutrons
by successive scatterings. Mapping the Σ−nn spin states to qubits as |sΣ−⟩ ⊗ |sn⟩ ⊗ |sn⟩, the S-matrix for successive
scatterings of the Σ− with each neutron is

Ŝij =
1

4

(
3 e2iδ1 + e2iδ0

)
1̂+

1

4

(
e2iδ1 − e2iδ0

)
σ̂i.σ̂j , ŜΣ−nn = Ŝ13.Ŝ12 (F1)

For a given stabilizer state |ψl⟩, of which there are 1080, we form the scattered state, ŜΣ−nn|ψl⟩, and then the associated
density matrix ρ̂(l). To quantify the impact of the Σ− on the two neutrons, the reduced matrix is formed by tracing
over the Σ− qubit, leaving the neutron-neutron reduced density matrix ρ

(l)
nn. This is most easily accomplished by

tracing against 3-qubit Pauli strings, and keeping only those of the form Î⊗σi⊗σj , with coefficient cl;ij3 , and forming
ρ
(l)
nn,

cl;ij3 =
1

8
Tr
[
ρ̂(l) . 1̂⊗ σ̂i ⊗ σ̂j

]
, ρ(l)nn = 2

∑
i,j

cl;ij3 σ̂i ⊗ σ̂j . (F2)

With the reduced density matrix we can apply the same procedure to compute the magic as in the main text, but
noting that in general ρ(l)nn corresponds to a mixed state and hence the normalizations that were explicit previously
cannot be assumed, and the probabilities are normalized “by hand” [93]. For each stablizer state, the magic M (l) is
computed by

cl;i2 = Tr
[
ρ(l)nn.P̂

]
, Ξ

(l)
i =

1

4

(
cl;i2

)2
A(l) =

∑
i

Ξi , B(l) =
∑
i

Ξ2
i , M (l) = 1− 4B(l)/A(l) , (F3)

and the magic power of the S-matrix acting on the reduced nn system (due to successive interactions with the Σ−)
is the average of this ensemble, ⟨M⟩ = 1

Nstab

∑
l

M (l).

Carrying out this calculation: first setting all phase shifts to zero, gives ⟨M⟩ = 0 as required for stabilizer states,
and second setting ∆δ = π/4 gives ⟨M⟩ = 0.405. Using ∆δ = π/4 provides a good estimate because the physical
phase shift is close to this value and constant over a large energy interval.

It is interesting to note that, of the 1080 3-qubit stablizer states, there are only small number of distinct pairs of
{A(l), B(l)} contributing to the average magic power,

{A(l), B(l)} = {{1, 1
4
}, {7

8
,
19

128
}, {1

2
,
1

8
}, {25

32
,
259

2048
}, {29

32
,
227

2048
}, {5

8
,
11

128
}, {17

32
,
179

2048
}, {17

32
,
155

2048
},

{21
32
,
195

2048
}, {21

32
,
171

2048
}, {25

32
,
211

2048
}} . (F4)

The results of this idealized model of successive Σ−n scatterings show that the Σ− induces magic between neutrons.
Given the environment in which these processes are conceivable, quantum decoherence due to interactions with other
species of particles is expected. The time-scale of decoherence determines, in part, the impact that the Σ−’s will have
in spreading magic and entanglement at a practical level.
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